A Domain Decomposition Solver for the Discontinuous 2 **Enrichment Method for the Helmholtz Equation**

3

4

29

30

Charbel Farhat¹, Radek Tezaur¹, and Jari Toivanen¹

Department of Aeronautics & Astronautics, Stanford University, Mail Code 3035, Stanford, CA 94305, U.S.A. cfarhat@stanford.edu, rtezaur@stanford.edu, toivanen@stanford.edu

1 Introduction 8

The discontinuous enrichment method (DEM) [4] for the Helmholtz equation approximates the solution as a sum of a piecewise polynomial continuous function and 10 element-wise supported plane waves [5]. A weak continuity of the plane wave part 11 is enforced using Lagrange multipliers. The plane wave enrichment improves the accuracy of solutions considerably. In the mid-frequency range, severalfold savings in 13 terms of degrees of freedom over comparable higher order polynomial discretizations 14 have been observed, which translates into even larger savings in compute time [6, 9]. 15 The partition of unity method [8] and the ultra weak variational formulation [1] also 16 employ plane waves in the construction of discretizations. It was shown recently in 17 [10] that DEM without the polynomial field is computationally more efficient than 18 these methods.

So far only direct solution methods have been used with DEM. This paper de- 20 scribes an iterative domain decomposition method which will enable to solve much 21 larger problems with DEM. The method is a generalization of the FETI-H version [3] 22 of the FETI method [2] and the domain decomposition method for DEM without the 23 polynomial part described in [7]. It is based on a non-overlapping decomposition of 24 the domain into subdomains. On the subdomain interfaces Lagrange multipliers are 25 introduced to enforce the continuity of the polynomial part strongly and the con- 26 tinuity of the enrichment weakly. An efficient iterative solution procedure with a 27 two-level preconditioner resembling that of the FETI-H method is constructed for 28 the Lagrange multipliers on the interfaces between the subdomains.

2 Problem Formulation and Discretization

The solution $u \in H^1(\Omega)$ of a Helmholtz problem modeling acoustic scattering from 31 a rigid obstacle, for example, satisfies the equations

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX, Lecture Notes in Computational Science and Engineering 91, DOI 10.1007/978-3-642-35275-1_23, © Springer-Verlag Berlin Heidelberg 2013 **Page 215**

Charbel Farhat, Radek Tezaur, and Jari Toivanen

$$-\Delta u - k^2 u = f \qquad \text{in } \Omega$$

$$\frac{\partial u}{\partial v} = g_1 \qquad \text{on } \Sigma_1$$

$$\frac{\partial u}{\partial v} = iku + g_2 \qquad \text{on } \Sigma_2,$$
(1)

where k is the wavenumber, Σ_1 is the boundary of a sound-hard scatterer, Σ_2 is the 33 far-field boundary, and ν denotes the unit outward normal.

Let the domain Ω be split into n_e elements, $\Omega = \bigcup_{e=1}^{n_e} \Omega_e$. In DEM, the solution 35 is sought in the form $u = u^P + u^E$, where u^P is a standard continuous piecewise 36 polynomial finite element function, and u^E is an enrichment function discontinuous 37 across element interfaces. A weak inter-element continuity of the solution is enforced 38 by Lagrange multipliers λ^E . The following hybrid variational formulation is used: 39 Find $u \in \mathcal{V}$ and $\lambda^E \in \mathcal{W}^E$ such that

$$a(u,v)+b(\lambda^E,v)=r(v) \qquad \forall v\in \mathscr{V}$$
 $b(\mu^E,u) \qquad =0 \qquad \forall \mu^E\in \mathscr{W}^E.$

42

The forms a, b, and r are defined by

$$\begin{split} a(u,v) &= \int_{\Omega} (\nabla u \cdot \nabla v - k^2 u v) d\Omega - \int_{\Sigma_2} i k u v \, d\Gamma, \\ b(\lambda^E,v) &= \sum_{e=1}^{n_e} \sum_{e'=1}^{e-1} \int_{\Gamma_{e,e'}} \lambda^E \left(v_{\Omega_e'} - v|_{\Omega_e} \right) d\Gamma, \quad \text{and} \\ r(v) &= \int_{\Omega} f v \, d\Omega + \int_{\Sigma_1} g_1 v \, d\Gamma + \int_{\Sigma_2} g_2 v \, d\Gamma, \end{split}$$

where $\Gamma_{e,e'} = \partial \Omega_e \cap \partial \Omega_{e'}$. For the considered discretization, the space $\mathscr V$ consists of 44 functions of the form $u = u^P + u^E$, where u^E is a superposition of n_θ planar waves, 45 i.e.

$$u^{E}(\mathbf{x}) = \sum_{p=1}^{n_{\theta}} e^{ik\theta_{p} \cdot \mathbf{x}} u_{e,p}^{E}, \qquad \mathbf{x} \in \Omega_{e}.$$

In two dimensions, $\theta_p = (\cos \vartheta_p, \sin \vartheta_p)^T$, $\vartheta_p = 2\pi(p-1)/n_\theta$, $p = 1, \dots, n_\theta$. The 48 Lagrange multipliers space \mathscr{W}^E is then chosen using functions of the form 49

$$\lambda^{E}(\mathbf{x}) = \sum_{p=1}^{n_{\lambda}} e^{ik\eta_{p}\tau_{e,e'}\cdot\mathbf{x}} \lambda_{e,e',p}, \qquad \mathbf{x} \in \Gamma_{e,e'},$$
 50

where $\tau_{e,e'}$ is a unit tangent vector and η_p is a scalar. This choice yields a family 51 of quadrilateral elements, denoted by $Q - n_\theta - n_\lambda$. In particular, the elements Q-8-2 52 and Q-16-4 used in the numerical experiments in this paper use $\eta_1 = -\eta_2 = 0.5$ and 53 $\{\eta_p\}_{p=1}^4 = \{\pm 0.2, \pm 0.75\}$, respectively. For details on stability, implementation, and 54 accuracy, the reader is referred to [5, 6].

56

73

74

3 Domain Decomposition Formulation

The elements are divided into n^d disjoint subsets E^j defining subdomains Ω^j such 57 that $\bar{\Omega}^j = \bigcup_{e \in E^j} \bar{\Omega}_e$. Subdomain problems are given by regularized bilinear forms 58

$$\begin{split} \widetilde{a}^{j}(u^{j}, v^{j}) &= \int_{\Omega^{j}} (\nabla u^{j} \cdot \nabla v^{j} - k^{2} u^{j} v^{j}) d\Omega - \int_{\Sigma_{2} \cap \partial \Omega^{j}} iku^{j} v^{j} d\Gamma \\ &- \gamma \sum_{\substack{j'=1\\j' \neq j}}^{n^{d}} \int_{\Gamma^{j,j'}} s^{j,j'} iku^{j} v^{j} d\Gamma, \end{split}$$

where $\Gamma^{j,j'} = \partial \Omega^j \cap \partial \Omega^{j'}$. The functions u^j and v^j belong to the restriction of \mathscr{V} 60 into Ω^j and the last term ensures the subdomain problems cannot be singular; for 61 details see [7]. The coefficients $s^{j,j'}$ are chosen so that the regularization terms cancel 62 out for a continuous function. The continuity of the polynomial part of the solution 63 $\tilde{u}^P = \sum_{j=1}^{n^d} u^{P,j}$ across the subdomain interfaces is enforced using a Lagrange multiplier 64 λ^P . For this purpose, a bilinear form

$$c(\lambda^{P}, \tilde{v}) = \sum_{i=1}^{n^{d}} \sum_{i'=1}^{j-1} \sum_{l} \lambda_{j,j',l}^{P} \left(\tilde{v}^{P}|_{\Omega^{j'}} - \tilde{v}^{P}|_{\Omega^{j}} \right) \left(\mathbf{x}_{j,j',l} \right)$$
66

is defined, where $\mathbf{x}_{j,j',l}$ is the location of the lth mesh node on $\Gamma^{j,j'}$. The mesh nodes 67 are given by the Lagrange interpolation points of the piecewise polynomial functions. 68 The domain decomposition formulation then reads:

Find
$$\tilde{u} \in \widetilde{\mathscr{V}}$$
, λ^E , and λ^P such that

$$\widetilde{a}(\widetilde{u},\widetilde{v}) + b(\lambda^{E},\widetilde{v}) + c(\lambda^{P},\widetilde{v}) = \widetilde{r}(\widetilde{v}) \qquad \forall \widetilde{v} \in \widetilde{\mathscr{V}}$$

$$b(\mu^{E},\widetilde{u}) = 0 \qquad \forall \mu^{E} \in \mathscr{W}^{E}$$

$$c(\mu^{P},\widetilde{u}) = 0 \qquad \forall \mu^{P} \in \mathscr{W}^{P},$$
(2)

where $\widetilde{\mathscr{V}}$ is spanned by $\sum_{j=1}^{n^d} v_j$, $\widetilde{a}(\widetilde{u}, \widetilde{v}) = \sum_{j=1}^{n^d} a^j(u^j, v^j)$, and \widetilde{r} is the sum of subdomain 71 contributions of r.

4 Linear Systems and Condensations

The formulation (2) leads to the saddle point system of linear equations

$$\begin{pmatrix} \mathbf{r}A^{PP} & \mathbf{r}A^{PE} & 0 & \mathbf{C}^{PL} \\ \mathbf{r}A^{EP} & \mathbf{r}A^{EE} & \mathbf{B}^{EL} & 0 \\ 0 & \mathbf{B}^{LE} & 0 & 0 \\ \mathbf{C}^{LP} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u}^{P} \\ \mathbf{u}^{E} \\ \lambda^{E} \\ \lambda^{P} \end{pmatrix} = \begin{pmatrix} \mathbf{r}^{P} \\ \mathbf{r}^{E} \\ 0 \\ 0 \end{pmatrix}, \tag{3}$$

Page 217

where the superscripts P, E, and L refer to the polynomial part, the enrichment 75 part, and the Lagrange multiplier, respectively, and u^P , u^E , λ^E , λ^P are vectors of the 76 subdomain-by-subdomain polynomial degrees of freedom (depicted by black dots 77 in Fig. 1), the element-by-element enrichment degrees of freedom (magenta arrows), 78 the enrichment element-to-element continuity Lagrange multipliers (red arrows), and 79 the polynomial subdomain-to-subdomain continuity Lagrange multipliers (black ar- 80 rows), respectively. The enrichment unknowns u^E can be condensed out on the element level (Fig. 1 top and left) to obtain

$$\begin{pmatrix} \mathbf{r}\bar{A} \ \mathbf{B}^T \ \mathbf{\bar{C}}^T \\ \mathbf{\bar{B}} \ \mathbf{\bar{D}} \ 0 \\ \mathbf{\bar{C}} \ 0 \ 0 \end{pmatrix} \begin{pmatrix} \mathbf{u}^P \\ \lambda^E \\ \lambda^P \end{pmatrix} = \begin{pmatrix} \mathbf{\bar{r}} \\ \bar{\mu} \\ 0 \end{pmatrix}, \tag{4}$$

where 83

$$\mathbf{r}\bar{A} = \mathbf{r}A^{PP} - \mathbf{r}A^{PE} (\mathbf{r}A^{EE})^{-1} \mathbf{r}A^{EP}, \ \bar{\mathbf{B}} = -\mathbf{B}^{LE} (\mathbf{r}A^{EE})^{-1} \mathbf{r}A^{EP},
\bar{\mathbf{C}} = \mathbf{C}^{LP}, \qquad \bar{\mathbf{D}} = -\mathbf{B}^{LE} (\mathbf{r}A^{EE})^{-1} \mathbf{B}^{EL},
\bar{\mathbf{r}} = \mathbf{r}^P - \mathbf{r}A^{PE} (\mathbf{r}A^{EE})^{-1} \mathbf{r}^E, \qquad \bar{\mu} = -\mathbf{B}^{LE} (\mathbf{r}A^{EE})^{-1} \mathbf{r}^E.$$

The enrichment Lagrange multipliers λ^E can be divided into two parts—those on 85 the boundaries between the subdomains and those inside the subdomains, denoted by 86 the subscript B and I, respectively. The system (4) can then be written in the block 87 form

$$\begin{pmatrix} \bar{\mathbf{r}}A & \bar{\mathbf{B}_{II}}^T & \bar{\mathbf{B}_{BB}}^T & \bar{\mathbf{C}}^T \\ \bar{\mathbf{B}}_{II} & \bar{\mathbf{D}}_{II} & \bar{\mathbf{D}}_{IB} & 0 \\ \bar{\mathbf{B}}_{BB} & \bar{\mathbf{D}}_{BI} & \bar{\mathbf{D}}_{BB} & 0 \\ \bar{\mathbf{C}} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{u}^P \\ \lambda_I^E \\ \lambda_B^E \\ \lambda^P \end{pmatrix} = \begin{pmatrix} \bar{\mathbf{r}} \\ \bar{\mu}_I \\ \bar{\mu}_B \\ 0 \end{pmatrix}.$$

Finally, the elimination on the subdomain level of the unknowns \mathbf{u}^P and the interior

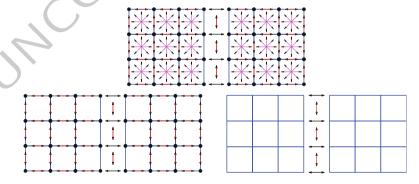


Fig. 1. 2×1 domain decomposition of a DEM discretization with bilinear polynomials and O-8-2 elements resulting in the system (3) (top); variables left after condensation of enrichment dofs (4) (*left*); and elimination of the subdomain interior dofs (5) (*right*)

89

82

enrichment Lagrange multipliers λ_I^E gives the Schur complement system (cf. Fig. 1 91 right)

 $\mathbf{F} \begin{pmatrix} \lambda_B^E \\ \lambda^P \end{pmatrix} = \mathbf{b}. \tag{5}$

96

99

114

It is noted that the matrix \mathbf{F} is a sum of subdomain matrices. Once the Lagrange multipliers λ_B^E and λ^P have been solved from (5), the rest of the unknowns is recovered by post-processing, first to obtain \mathbf{u}^P and λ_I^E , then to obtain \mathbf{u}^E .

5 Preconditioning

The system (5) is solved efficiently using a Krylov iterative method with a two-level 97 preconditioner which is a generalization of those described in [3, 7]. 98

Here, the subdomain preconditioners are based on the bilinear forms

$$\hat{a}^{j}(u^{j}, v^{j}) = \int_{\Omega^{j}} (\nabla u^{j} \cdot \nabla v^{j} - k^{2}u^{j}v^{j}) d\Omega - \int_{\partial\Omega^{j} \setminus \Sigma_{1}} iku^{j}v^{j} d\Gamma,$$

$$\hat{b}^{j}(\lambda^{E}, v^{j}) = \sum_{e \in E^{j}} \sum_{e'=e+1}^{n_{e}} \int_{\Gamma_{e,e'}} \lambda^{E}v|_{\Omega_{e}} d\Gamma - \sum_{e \in E^{j}} \sum_{e'=1}^{e-1} \int_{\Gamma_{e,e'}} \lambda^{E}v|_{\Omega_{e}} d\Gamma, \text{ and}$$

$$\hat{c}^{j}(\lambda^{P}, v^{j}) = \sum_{i'=j+1}^{n^{d}} \sum_{l} \lambda_{j,j',l}^{P} v^{P}|_{\Omega^{j}} (\mathbf{x}_{j,j',l}) - \sum_{i'=1}^{j-1} \sum_{l} \lambda_{j,j',l}^{P} v^{P}|_{\Omega^{j}} (\mathbf{x}_{j,j',l}).$$

Repeating the same steps described above for obtaining ${\bf F}$ in (5) but with matrices based on $\hat a^j$, and restricting the resulting matrix to the unknowns corresponding to the interfaces of the subdomain Ω^j , a matrix denoted by ${\bf F}^j$ is obtained (cf. [7]). An additive subdomain-by-subdomain preconditioner is then defined by

$$\mathbf{K} = \sum_{i=1}^{n^d} \left(\mathbf{R}^j \right)^T \left(\mathbf{F}^j \right)^{-1} \mathbf{R}^j,$$
 105

where \mathbf{R}^j is the restriction on the interfaces associated with Ω^j . Linear systems with 106 \mathbf{F}^j can be solved efficiently using an LU decomposition.

The system (5) is solved iteratively on the orthogonal complement of a coarse space spanned by the columns of a matrix \mathbf{Q} (cf. [3, 7]). A projector to the orthogonal complement of the coarse space is given by

$$\mathbf{P} = \mathbf{I} - \mathbf{Q}(\mathbf{Q}^T \mathbf{F} \mathbf{Q})^{-1} \mathbf{Q}^T \mathbf{F}.$$

The solution $\lambda = [\lambda_B^E, \lambda^P]^T$ of (5) can be decomposed into two parts $\lambda = \lambda^0 + \mathbf{P}\lambda^1$, 112 where $\lambda^0 = \mathbf{Q}(\mathbf{Q}^T\mathbf{F}\mathbf{Q})^{-1}\mathbf{Q}^T\mathbf{b}$ and λ^1 satisfies

$$\mathbf{P}^T \mathbf{F} \lambda^1 = \mathbf{P}^T \mathbf{b}.$$

Including the preconditioner **K** leads to the following equation

$$\mathbf{P}\mathbf{K}\mathbf{P}^{T}\mathbf{F}\lambda^{1} = \mathbf{P}\mathbf{K}\mathbf{F}\lambda^{1} = \mathbf{P}\mathbf{K}\mathbf{P}^{T}\mathbf{b},$$

115

123

124

which is solved by GMRES.

The coarse space is based on plane waves propagating in n_q uniformly distributed 116 directions. Each set of n_a plane waves are supported by one subdomain interface $\Gamma^{j,j'}$ 117 and their normal derivatives on the interface are approximated using an L^2 -projection 118 into the space of Lagrange multipliers giving rise to n_a columns of **Q**. Currently, the 119 coarse space acts only on the interface enrichment Lagrange multipliers λ_R^E . The 120 maximum dimension of the coarse space is $n_q n_i$, where n_i is the number of nonzero measure interfaces $\Gamma^{j,j'}$. A **QR** factorization is used to remove nearly linearly dependent vectors. More details are given in Sect. 3.4 of [7].

6 Numerical Results

The model problem considered here is given by (1) with the computational domain 125 $\Omega = \{\mathbf{x} \in \mathbb{R}^2 : 1 < ||\mathbf{x}|| < 2\}$, and the boundaries $\Gamma_1 = \{\mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}|| = 1\}$ and $\Gamma_2 = 126$ $\{\mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}|| = 2\}$. The right-hand side function and the boundary functions are 127 chosen as 128

$$\begin{split} f(\mathbf{x}) &= (-\Delta - k^2)(x_1^2 + x_2^2) = -4 - k^2(x_1^2 - x_2^2), \\ g_1(\mathbf{x}) &= -\frac{\partial e^{-ikx_1}}{\partial v} + \frac{\partial (x_1^2 + x_2^2)}{\partial v} = -ikx_1e^{ikx_1} - 2(x_1^2 + x_2^2), \quad \text{and} \\ g_2(\mathbf{x}) &= \frac{\partial (x_1^2 + x_2^2)}{\partial v} - ik(x_1^2 + x_2^2) = (1 - ik)(x_1^2 + x_2^2). \end{split}$$

The solution is a sum of that given by the scattering of the plane wave e^{-ikx_1} by 130 a sound-hard disk inside Γ_1 and the polynomial $x_1^2 + x_2^2$. Two wavenumbers, k = 131 8π and 16π are considered, in which case the diameter of the scatterer is 8 and 132 16 wavelengths, respectively. The solution at $k = 16\pi$ is shown in Fig. 2. Meshes 133 of 96×8 $(k = 8\pi)$ and 192×16 $(k = 16\pi)$ elements result in two elements per 134 wavelength in the radial direction. 135

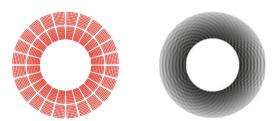


Fig. 2. The 24×2 domain decomposition for the 192×16 mesh (*left*) and the real part of the solution at $k = 16\pi$ (right)

t1 1 t1 2 t1 3 t1 4 t1.5

t1 7 t1.8 t1.9 t1 10 +1 11

149

Table 1. Results for the 96×8 mesh with the wavenumber $k = 8\pi$.							
12 x 1 subdomains	24 x 2 subdomains						

		12 :	x 1 subd	omains	24 x 2 subdomains			
			$n_q = 0$	$n_q = 8$		$n_q = 0$	$n_q = 8$	
poly	enrich	N	iter.	iter.	N	iter.	iter.	error
$\overline{Q_1}$	none	108	49		336	213		0.683405
Q_2	none	204	33		624	195		0.141341
none	Q-8-2	192	35	31	576	163	7	0.438341
Q_1	Q-8-2	300	34	31	912	184	28	0.004677
Q_2	Q-8-2	396	34	31	1200	206	48	0.004472
none	Q-16-4	384	35	30	1152	151	39	0.019767
Q_1	Q-16-4	492	36	31	1488	160	54	0.000024
Q_2	Q-16-4	588	36	31	1776	176	73	0.000013

Table 2. Results for the 192×16 mesh with the wavenumber $k = 16\pi$.

		12 x 1 subdomains			24 x 2 subdomains			t2.1	
			$n_q = 0$	$n_q = 16$		$n_q = 0$	$n_q = 16$		t2.2
poly	enrich	N	iter.	iter.	N	iter.	iter.	error	t2.3
Q_1	none	204	79		624	350		0.568750	t2.4
Q_2	none	396	40		1200	368		0.174451	t2.5
none	Q-8-2	384	44	34	1152	264	16	0.478914	t2.6
Q_1	Q-8-2	588	42	34	1776	281	31	0.007441	t2.7
Q_2	Q-8-2	780	42	34	2352	295	56	0.007826	t2.8
none	Q-16-4	768	42	33	2304	233	42	0.021694	t2.9
Q_1	Q-16-4	972	42	35	2928	238	52	0.000011	t2.10
Q_2	Q-16-4	1164	42	33	3504	253	123	0.000010	t2.11

Bilinear (Q_1) and biquadratic (Q_2) bases are used for the polynomial part u^P . 136 Q-8-2 and Q-16-4 elements are used for the enrichment u^E and its Lagrange multipliers λ^E . The domain is decomposed into 12×1 and 24×2 subdomains (Fig. 2). 138 The GMRES iterations are terminated once the norm of the residual is reduced by 139 10⁻⁸. Tables 1 and 2 summarize the performance results obtained for various element 140 types. In these tables, N is the size of the system (5), i.e. the number of Lagrange multipliers enforcing continuity between subdomains. The error is the relative l_2 error of 142 the averaged nodal values with respect to the analytical solution of the problem.

The errors in the last column of Tables 1 and 2 clearly show the benefit of discretizations with both polynomial and enrichment fields for this problem. The com- 145 bined discretizations increase the accuracy by at least two orders of magnitude. The 146 iteration counts without a coarse space $(n_a = 0)$ are roughly the same for all discretizations and not quite satisfactory for the 24 × 2 decomposition. However, these 148 are reduced substantially when the coarse space is added.

Bibliography 150 [1] Olivier Cessenat and Bruno Despres. Application of an ultra weak variational 151 formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM 152 J. Numer. Anal., 35(1):255-299, 1998. 153 [2] Charbel Farhat and Françoise-Xavier Roux. A method of finite element tearing 154 and interconnecting and its parallel solution algorithm. Internat. J. Numer. 155 Meths. Engrg., 32(6):1205–1227, 1991. 156 [3] Charbel Farhat, Antonini Macedo, and Michel Lesoinne. A two-level do- 157 main decomposition method for the iterative solution of high frequency exterior 158 Helmholtz problems. *Numer. Math.*, 85(2):283–308, 2000. 159 [4] Charbel Farhat, Isaac Harari, and Leopoldo P. Franca. The discontinuous en- 160 richment method. Comput. Methods Appl. Mech. Engrg., 190(48):6455-6479, 161 2001. 162 [5] Charbel Farhat, Isaac Harari, and Ulrich Hetmaniuk. A discontinuous Galerkin 163 method with Lagrange multipliers for the solution of Helmholtz problems in 164 the mid-frequency regime. Comput. Methods Appl. Mech. Engrg., 192(11-12): 165 1389–1419, 2003. 166 [6] Charbel Farhat, Radek Tezaur, and Paul Weidemann-Goiran. Higher-order 167 extensions of a discontinuous Galerkin method for mid-frequency Helmholtz 168 problems. Internat. J. Numer. Methods Engrg., 61(11):1938–1956, 2004. 169 [7] Charbel Farhat, Radek Tezaur, and Jari Toivanen. A domain decomposition 170 method for discontinuous Galerkin discretizations of Helmholtz problems with 171 plane waves and Lagrange multipliers. *Internat. J. Numer. Methods Engrg.*, 78 172 (13):1513–1531, 2009. [8] Jens M. Melenk and Ivo Babuška. The partition of unity finite element method: 174 basic theory and applications. Comput. Methods Appl. Mech. Engrg., 139(1-4): 175 289-314, 1996. [9] Radek Tezaur and Charbel Farhat. Three-dimensional discontinuous Galerkin 177 elements with plane waves and Lagrange multipliers for the solution of mid- 178 frequency Helmholtz problems. Internat. J. Numer. Methods Engrg., 66(5): 179 796-815, 2006. 180 [10] Dalei Wang, Radek Tezaur, Jari Toivanen, and Charbel Farhat. Overview of the 181 discontinuous enrichment method, the ultra-weak variational formulation, and 182

the partition of unity method for acoustic scattering in the medium frequency 183 regime and performance comparisons. *Internat. J. Numer. Methods Engrg.*, 89 184

185

(4):403–417, 2012.