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1 Introduction 8

The discontinuous enrichment method (DEM) [4] for the Helmholtz equation ap- 9

proximates the solution as a sum of a piecewise polynomial continuous function and 10

element-wise supported plane waves [5]. A weak continuity of the plane wave part 11

is enforced using Lagrange multipliers. The plane wave enrichment improves the ac- 12

curacy of solutions considerably. In the mid-frequency range, severalfold savings in 13

terms of degrees of freedom over comparable higher order polynomial discretizations 14

have been observed, which translates into even larger savings in compute time [6, 9]. 15

The partition of unity method [8] and the ultra weak variational formulation [1] also 16

employ plane waves in the construction of discretizations. It was shown recently in 17

[10] that DEM without the polynomial field is computationally more efficient than 18

these methods. 19

So far only direct solution methods have been used with DEM. This paper de- 20

scribes an iterative domain decomposition method which will enable to solve much 21

larger problems with DEM. The method is a generalization of the FETI-H version [3] 22

of the FETI method [2] and the domain decomposition method for DEM without the 23

polynomial part described in [7]. It is based on a non-overlapping decomposition of 24

the domain into subdomains. On the subdomain interfaces Lagrange multipliers are 25

introduced to enforce the continuity of the polynomial part strongly and the con- 26

tinuity of the enrichment weakly. An efficient iterative solution procedure with a 27

two-level preconditioner resembling that of the FETI-H method is constructed for 28

the Lagrange multipliers on the interfaces between the subdomains. 29

2 Problem Formulation and Discretization 30

The solution u ∈ H1(Ω) of a Helmholtz problem modeling acoustic scattering from 31

a rigid obstacle, for example, satisfies the equations 32

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
Lecture Notes in Computational Science and Engineering 91,
DOI 10.1007/978-3-642-35275-1__23, © Springer-Verlag Berlin Heidelberg 2013

mailto:cfarhat@stanford.edu
mailto:rtezaur@stanford.edu
mailto:toivanen@stanford.edu


Page 216

UN
CO

RR
EC

TE
D

PR
O
O
F

Charbel Farhat, Radek Tezaur, and Jari Toivanen

−Δu− k2u = f in Ω
∂u
∂ν

= g1 on Σ1

∂u
∂ν

= iku+ g2 on Σ2,

(1)

where k is the wavenumber, Σ1 is the boundary of a sound-hard scatterer, Σ2 is the 33

far-field boundary, and ν denotes the unit outward normal. 34

Let the domain Ω be split into ne elements, Ω = ∪ne
e=1Ωe. In DEM, the solution 35

is sought in the form u = uP + uE , where uP is a standard continuous piecewise 36

polynomial finite element function, and uE is an enrichment function discontinuous 37

across element interfaces. A weak inter-element continuity of the solution is enforced 38

by Lagrange multipliers λ E . The following hybrid variational formulation is used: 39

Find u ∈ V and λ E ∈W E such that 40

a(u,v)+ b(λ E,v) = r(v) ∀v ∈ V

b(μE ,u) = 0 ∀μE ∈W E .
41

The forms a, b, and r are defined by 42

a(u,v) =
∫

Ω
(∇u ·∇v− k2uv)dΩ −

∫
Σ2

ikuvdΓ ,

b(λ E ,v) =
ne

∑
e=1

e−1

∑
e′=1

∫
Γe,e′

λ E (vΩ ′e − v|Ωe

)
dΓ , and

r(v) =
∫

Ω
f vdΩ +

∫
Σ1

g1 vdΓ +

∫
Σ2

g2 vdΓ ,

43

where Γe,e′ = ∂Ωe∩∂Ωe′ . For the considered discretization, the space V consists of 44

functions of the form u = uP + uE , where uE is a superposition of nθ planar waves, 45

i.e. 46

uE(x) =
nθ

∑
p=1

eikθ p·xuE
e,p, x ∈Ωe. 47

In two dimensions, θ p = (cosϑp,sinϑp)
T ,ϑp = 2π(p− 1)/nθ , p = 1, . . . ,nθ . The 48

Lagrange multipliers space W E is then chosen using functions of the form 49

λ E(x) =
nλ

∑
p=1

eikηpτe,e′ ·xλe,e′ ,p, x ∈ Γe,e′ , 50

where τe,e′ is a unit tangent vector and ηp is a scalar. This choice yields a family 51

of quadrilateral elements, denoted by Q-nθ -nλ . In particular, the elements Q-8-2 52

and Q-16-4 used in the numerical experiments in this paper use η1 =−η2 = 0.5 and 53

{ηp}4
p=1 = {±0.2,±0.75}, respectively. For details on stability, implementation, and 54

accuracy, the reader is referred to [5, 6]. 55
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3 Domain Decomposition Formulation 56

The elements are divided into nd disjoint subsets E j defining subdomains Ω j such 57

that Ω̄ j = ∪e∈E j Ω̄e. Subdomain problems are given by regularized bilinear forms 58

ã j(u j,v j) =
∫

Ω j
(∇u j ·∇v j− k2u jv j)dΩ −

∫
Σ2∩∂Ω j

iku jv j dΓ

− γ
nd

∑
j′=1
j′ �= j

∫
Γ j, j′

s j, j′ iku jv j dΓ ,
59

where Γ j, j′ = ∂Ω j ∩ ∂Ω j′ . The functions u j and v j belong to the restriction of V 60

into Ω j and the last term ensures the subdomain problems cannot be singular; for 61

details see [7]. The coefficients s j, j′ are chosen so that the regularization terms cancel 62

out for a continuous function. The continuity of the polynomial part of the solution 63

ũP =
nd

∑
j=1

uP, j across the subdomain interfaces is enforced using a Lagrange multiplier 64

λ P. For this purpose, a bilinear form 65

c(λ P, ṽ) =
nd

∑
j=1

j−1

∑
j′=1

∑
l

λ P
j, j′,l
(
ṽP|Ω j′ − ṽP|Ω j

)
(x j, j′,l) 66

is defined, where x j, j′,l is the location of the lth mesh node on Γ j, j′ . The mesh nodes 67

are given by the Lagrange interpolation points of the piecewise polynomial functions. 68

The domain decomposition formulation then reads: 69

Find ũ ∈ Ṽ , λ E , and λ P such that 70

ã(ũ, ṽ)+ b(λ E , ṽ)+ c(λ P, ṽ) = r̃(ṽ) ∀ṽ ∈ Ṽ

b(μE , ũ) = 0 ∀μE ∈W E

c(μP, ũ) = 0 ∀μP ∈W P,

(2)

where Ṽ is spanned by
nd

∑
j=1

v j, ã(ũ, ṽ) =
nd

∑
j=1

a j(u j,v j), and r̃ is the sum of subdomain 71

contributions of r. 72

4 Linear Systems and Condensations 73

The formulation (2) leads to the saddle point system of linear equations 74

⎛
⎜⎜⎝

rAPP rAPE 0 CPL

rAEP rAEE BEL 0
0 BLE 0 0

CLP 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

uuuP

uuuE

λ E

λ P

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

rP

rE

0
0

⎞
⎟⎟⎠ , (3)
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where the superscripts P, E , and L refer to the polynomial part, the enrichment 75

part, and the Lagrange multiplier, respectively, and uuuP,uuuE ,λ E ,λ P are vectors of the 76

subdomain-by-subdomain polynomial degrees of freedom (depicted by black dots 77

in Fig. 1), the element-by-element enrichment degrees of freedom (magenta arrows), 78

the enrichment element-to-element continuity Lagrange multipliers (red arrows), and 79

the polynomial subdomain-to-subdomain continuity Lagrange multipliers (black ar- 80

rows), respectively. The enrichment unknowns uuuE can be condensed out on the ele- 81

ment level (Fig. 1 top and left) to obtain 82

⎛
⎝r̄A B̄T C̄T

B̄ D̄ 0
C̄ 0 0

⎞
⎠
⎛
⎝uuuP

λ E

λ P

⎞
⎠=

⎛
⎝ r̄

μ̄
0

⎞
⎠ , (4)

where 83

r̄A = rAPP− rAPE
(
rAEE

)−1 rAEP, B̄ =−BLE
(
rAEE

)−1 rAEP,

C̄ = CLP, D̄ =−BLE
(
rAEE

)−1 BEL,

r̄ = rP− rAPE
(
rAEE

)−1 rE , μ̄ =−BLE
(
rAEE

)−1 rE .

84

The enrichment Lagrange multipliers λ E can be divided into two parts—those on 85

the boundaries between the subdomains and those inside the subdomains, denoted by 86

the subscript B and I, respectively. The system (4) can then be written in the block 87

form 88⎛
⎜⎜⎝

r̄A B̄II
T ¯BBB

T C̄T

B̄II D̄II D̄IB 0
B̄BB D̄BI D̄BB 0
C̄ 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

uuuP

λ E
I

λ E
B

λ P

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

r̄
μ̄ I
μ̄B
0

⎞
⎟⎟⎠ .

Finally, the elimination on the subdomain level of the unknowns uuuP and the interior

Fig. 1. 2×1 domain decomposition of a DEM discretization with bilinear polynomials and Q-
8-2 elements resulting in the system (3) (top); variables left after condensation of enrichment
dofs (4) (left); and elimination of the subdomain interior dofs (5) (right)
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enrichment Lagrange multipliers λ E
I gives the Schur complement system (cf. Fig. 1 91

right) 92

F
(

λ E
B

λ P

)
= b. (5)

It is noted that the matrix F is a sum of subdomain matrices. Once the Lagrange mul- 93

tipliers λ E
B and λ P have been solved from (5), the rest of the unknowns is recovered 94

by post-processing, first to obtain uuuP and λ E
I , then to obtain uuuE . 95

5 Preconditioning 96

The system (5) is solved efficiently using a Krylov iterative method with a two-level 97

preconditioner which is a generalization of those described in [3, 7]. 98

Here, the subdomain preconditioners are based on the bilinear forms 99

â j(u j,v j) =

∫
Ω j

(∇u j ·∇v j− k2u jv j)dΩ −
∫

∂Ω j\Σ1

iku jv j dΓ ,

b̂ j(λ E ,v j) = ∑
e∈E j

ne

∑
e′=e+1

∫
Γe,e′

λ Ev|ΩedΓ − ∑
e∈E j

e−1

∑
e′=1

∫
Γe,e′

λ Ev|ΩedΓ , and

ĉ j(λ P,v j) =
nd

∑
j′= j+1

∑
l

λ P
j, j′,lv

P|Ω j (x j, j′,l)−
j−1

∑
j′=1

∑
l

λ P
j, j′,lv

P|Ω j (x j, j′,l).

100

Repeating the same steps described above for obtaining F in (5) but with matrices 101

based on â j, and restricting the resulting matrix to the unknowns corresponding to 102

the interfaces of the subdomain Ω j, a matrix denoted by F j is obtained (cf. [7]). An 103

additive subdomain-by-subdomain preconditioner is then defined by 104

K =
nd

∑
j=1

(
R j)T (

F j)−1
R j, 105

where R j is the restriction on the interfaces associated with Ω j. Linear systems with 106

F j can be solved efficiently using an LU decomposition. 107

The system (5) is solved iteratively on the orthogonal complement of a coarse 108

space spanned by the columns of a matrix Q (cf. [3, 7]). A projector to the orthogonal 109

complement of the coarse space is given by 110

P = I−Q(QT FQ)−1QT F. 111

The solution λ = [λ E
B ,λ

P]T of (5) can be decomposed into two parts λ = λ 0 +Pλ 1, 112

where λ 0 = Q(QT FQ)−1QT b and λ 1 satisfies 113

PT Fλ 1 = PT b.

Including the preconditioner K leads to the following equation 114
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PKPT Fλ 1 = PKFλ 1 = PKPT b,

which is solved by GMRES. 115

The coarse space is based on plane waves propagating in nq uniformly distributed 116

directions. Each set of nq plane waves are supported by one subdomain interface Γ j, j′
117

and their normal derivatives on the interface are approximated using an L2-projection 118

into the space of Lagrange multipliers giving rise to nq columns of Q. Currently, the 119

coarse space acts only on the interface enrichment Lagrange multipliers λ E
B . The 120

maximum dimension of the coarse space is nqni, where ni is the number of nonzero 121

measure interfaces Γ j, j′ . A QR factorization is used to remove nearly linearly de- 122

pendent vectors. More details are given in Sect. 3.4 of [7]. 123

6 Numerical Results 124

The model problem considered here is given by (1) with the computational domain 125

Ω = {x ∈ R
2 : 1 < ‖x‖ < 2}, and the boundaries Γ1 = {x ∈ R

2 : ‖x‖= 1} and Γ2 = 126

{x ∈ R
2 : ‖x‖ = 2}. The right-hand side function and the boundary functions are 127

chosen as 128

f (x) = (−Δ − k2)(x2
1 + x2

2) =−4− k2(x2
1− x2

2),

g1(x) =−∂e−ikx1

∂ν
+

∂ (x2
1 + x2

2)

∂ν
=−ikx1eikx1 −2(x2

1 + x2
2), and

g2(x) =
∂ (x2

1 + x2
2)

∂ν
− ik(x2

1 + x2
2) = (1− ik)(x2

1 + x2
2).

129

The solution is a sum of that given by the scattering of the plane wave e−ikx1 by 130

a sound-hard disk inside Γ1 and the polynomial x2
1 + x2

2. Two wavenumbers, k = 131

8π and 16π are considered, in which case the diameter of the scatterer is 8 and 132

16 wavelengths, respectively. The solution at k = 16π is shown in Fig. 2. Meshes 133

of 96× 8 (k = 8π) and 192× 16 (k = 16π) elements result in two elements per 134

wavelength in the radial direction. 135

Fig. 2. The 24×2 domain decomposition for the 192×16 mesh (left) and the real part of the
solution at k = 16π (right)
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Table 1. Results for the 96×8 mesh with the wavenumber k = 8π .

t1.112 x 1 subdomains 24 x 2 subdomains
t1.2nq = 0 nq = 8 nq = 0 nq = 8
t1.3poly enrich N iter. iter. N iter. iter. error
t1.4Q1 none 108 49 336 213 0.683405
t1.5Q2 none 204 33 624 195 0.141341
t1.6none Q-8-2 192 35 31 576 163 7 0.438341
t1.7Q1 Q-8-2 300 34 31 912 184 28 0.004677
t1.8Q2 Q-8-2 396 34 31 1200 206 48 0.004472
t1.9none Q-16-4 384 35 30 1152 151 39 0.019767
t1.10Q1 Q-16-4 492 36 31 1488 160 54 0.000024
t1.11Q2 Q-16-4 588 36 31 1776 176 73 0.000013

Table 2. Results for the 192×16 mesh with the wavenumber k = 16π .

t2.112 x 1 subdomains 24 x 2 subdomains
t2.2nq = 0 nq = 16 nq = 0 nq = 16
t2.3poly enrich N iter. iter. N iter. iter. error
t2.4Q1 none 204 79 624 350 0.568750
t2.5Q2 none 396 40 1200 368 0.174451
t2.6none Q-8-2 384 44 34 1152 264 16 0.478914
t2.7Q1 Q-8-2 588 42 34 1776 281 31 0.007441
t2.8Q2 Q-8-2 780 42 34 2352 295 56 0.007826
t2.9none Q-16-4 768 42 33 2304 233 42 0.021694
t2.10Q1 Q-16-4 972 42 35 2928 238 52 0.000011
t2.11Q2 Q-16-4 1164 42 33 3504 253 123 0.000010

Bilinear (Q1) and biquadratic (Q2) bases are used for the polynomial part uuuP. 136

Q-8-2 and Q-16-4 elements are used for the enrichment uuuE and its Lagrange multi- 137

pliers λ E . The domain is decomposed into 12× 1 and 24× 2 subdomains (Fig. 2). 138

The GMRES iterations are terminated once the norm of the residual is reduced by 139

10−8. Tables 1 and 2 summarize the performance results obtained for various element 140

types. In these tables, N is the size of the system (5), i.e. the number of Lagrange mul- 141

tipliers enforcing continuity between subdomains. The error is the relative l2 error of 142

the averaged nodal values with respect to the analytical solution of the problem. 143

The errors in the last column of Tables 1 and 2 clearly show the benefit of dis- 144

cretizations with both polynomial and enrichment fields for this problem. The com- 145

bined discretizations increase the accuracy by at least two orders of magnitude. The 146

iteration counts without a coarse space (nq = 0) are roughly the same for all dis- 147

cretizations and not quite satisfactory for the 24×2 decomposition. However, these 148

are reduced substantially when the coarse space is added. 149
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