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1 Introduction 7

We are interested in solving the Helmholtz equation 8

{−�u(x,y,z)− k2(x,y,z) u(x,y,z) = g(x,y,z), (x,y,z) ∈Ω ,
∂nu(x,y,z)− ik(x,y,z) u(x,y,z) = 0, (x,y,z) ∈ ∂Ω ,

(1)

where k := 2π f/c is the wavenumber with frequency f ∈ R and c := c(x,y,z) is 9

the velocity of the medium, which varies in space. The geophysical model SEG– 10

SALT is used as a benchmark problem on which we will test some existing domain 11

decomposition methods in this paper. In this model, the domain Ω is defined as 12

(0,13,520)× (0,13,520)× (0,4,200)m3, the velocity is described as piecewise con- 13

stants on 676×676×210 cells and varies from 1,500 to 4,500 m/s, and the source 14

g is a Dirac function at the point (6,000,6,760,10). 15

To discretize the problem (1) on a coarser mesh, the velocity is sub-sampled to 16

less number of cells such that every cell has a constant velocity and contains one 17

or more mesh elements. Then the problem (1) is discretized with Q1 finite elements 18

(i.e. trilinear local basis functions on brick elements). 19

We first test the direct solver A\b in Matlab; the results are listed in Table 1 where 20

nw is the number of wavelength along the x-direction at the lowest velocity. At f = 2, 21

the direct solver runs out of memory after 6 h on a computer with 64 GB of mem- 22

ory. The inefficiency in both memory and time of the direct solver for large scale 23

problems calls for cheaper iterative methods. For a review of current iterative meth- 24

ods for the Helmholtz equation, we refer to [6]. In this work, we focus on domain 25

decomposition methods which are easily parallelized. 26

2 Overview of Some Existing Methods 27

Due to the indefiniteness of the Helmholtz equation, the classical Schwarz method 28

with Dirichlet transmission conditions fails to converge. As a remedy, [5] introduced 29
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Table 1. Test of the direct solver (backslash in Matlab)

f 1/4 1/2 1 2

nw 2.25 4.5 9 18
mesh 24×24×8 48×48×16 96×96×32 192×192×64
CPU 1.28s 27.51s 829.91s > 6h

first-order absorbing transmission conditions to replace the Dirichlet transmission 30

conditions. This type of interface condition was also adopted in [7] to regularize 31

subdomain problems. More general local transmission conditions of zero or second 32

order were proposed and analyzed in [10, 11] with parameters optimized for acceler- 33

ating convergence. More advanced and even non-local transmission conditions can 34

be used, see [3, 12, 18], and also [2, 13] in this volume. In this paper, however, we 35

will restrict ourselves to local transmission conditions. 36

Another remedy is to modify the usual coarse problem, which probably origi- 37

nated from the multigrid context, first suggested by Achi Brandt and presented in 38

[19]. In their paper [7], Farhat et al. used plane waves on the interface as basis of the 39

coarse space. The idea turns out to be very successful and was followed by Farhat 40

et al. [8], Kimn and Sarkis [15], and Li and Tu [17], and will also be used for the 41

optimized Schwarz methods in this paper. Note that, however, the coarse problem 42

does not change the underlying subdomain problems. 43

In the following paragraphs, we will give a brief introduction to these methods at 44

the (almost) continuous level. 45

2.1 The Non-overlapping Methods 46

We partition the domain into non-overlapping subdomains denoted by Ω := ∪iΩi, 47

and we call the set of points shared by more than two subdomains (or shared by two 48

subdomains and the outer boundary ∂Ω ) corners. In three dimensions, this includes 49

vertices and edges. We call all the points shared by exactly two subdomains the 50

interface Γ , and in particular a connected component of the interface shared by Ωi 51

and Ω j is called interface segment Γi j. 52

If we know the Neumann, Dirichlet or Robin data (denoted by λ ) of the exact 53

solution on the interface, then we can recover the exact solution from the corre- 54

sponding boundary value problems defined on subdomains (as long as they are well- 55

posed) with continuous constraints at corners. Since on every subdomain there is a 56

recovered solution that gives Dirichlet, Neumann or Robin traces on the interface, 57

we expect for each interface segment Γi j the traces from Ωi and Ω j to be equal. The 58

above process indeed sets up an equation, denoted by Fλ = d, for the interface data 59

λ of the exact solution. For the Helmholtz equation, an additional coarse problem is 60

introduced such that (I−FQ(Q∗FQ)−1Q∗)Fλ = (I−FQ(Q∗FQ)−1Q∗)d is solved, 61

where the columns of Q are traces of plane waves on the interface. 62

From the above point of view, we summarize some existing non-overlapping 63

domain decomposition methods in Table 2. The (first-order) absorbing boundary data 64
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is defined as λ := ∂nu− iku. The lumped preconditioner is the stiffness submatrix 65

AΓ Γ corresponding to the interface. The first three methods share interface data (up 66

to a sign for the normal derivative) on their common interface segments, and are 67

therefore one-field methods. This is in contrast to the last method, since optimized 68

Schwarz methods have two sets of unknowns on each interface segment, and thus 69

belong to the class of two-field methods. Note also that we do not have suitable 70

preconditioners for the last two methods, which can be a subject for future study. 71

Table 2. The non-overlapping methods

t2.1Algorithms Unknowns Matching Precond.

t2.2FETI-DPH ([8]) Neumann Dirichlet DtN/lumped
t2.3BDDC-H ([17]) Dirichlet Neumann NtD
t2.4FETI-H ([7]) Absorbing Dirichlet (none)
t2.5Optimized Schwarz ([10]) two-field Robin two-field Robin (none)

2.2 The Overlapping Methods 72

We partition the domain into overlapping subdomains. We will use the substructured 73

form3 as for the non-overlapping methods in Sect. 2.1. Note that in an overlapping 74

setting, subdomains can not share the same interface data, since the interfaces are 75

in different locations, and therefore all overlapping methods are in some sense two 76

field methods, like the non-overlapping optimized Schwarz methods. The interface 77

data used (both as unknowns and matching conditions) and related references are: 78

Dirichlet [16], absorbing [4, 15], Neumann [14], Robin [9]. A coarse problem as in 79

Sect. 2.1 is adopted but without corner constraints. 80

3 Numerical Experiments 81

All the experiments were done in Matlab with sequential codes. We use GMRES with 82

zero initial guess to solve the substructured systems until the relative residual is less 83

than 10−6 or the maximum iteration number is attained. The domain is partitioned in 84

a Cartesian way. If we vary the mesh size, then the velocity in (1) is sub-sampled on 85

the coarsest mesh of 24×24×8. 86

We introduce the following acronyms: 87

FL/FD: FETI-DPH with the lumped/DtN preconditioner 88

FH: FETI-H with corner constraints 89

O0/O2: non-overlapping optimized Schwarz of zero/second order 90

3 Though most of the overlapping methods in the literature are not in this form, we found by
numerical experiments it may be cheaper in both time and memory.
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OD/ON/OR: overlapping method with Dirichlet/Neumann/absorbing data 91

OO0/OO2: overlapping optimized Schwarz of zero/second order 92

For the overlapping methods, the overlapping region has a thickness of two mesh 93

elements and the matching conditions are imposed on faces, edges and vertices, re- 94

spectively, without repeats on any degrees of freedom. Due to the absence of relevant 95

results, the parameters for the optimized Schwarz methods are not respecting over- 96

lapping (except OO0), coarse problem and medium heterogeneity. The plane waves 97

used are along six directions that are normal to the x-y, y-z and z-x planes, respec- 98

tively. 99

We found that all the methods outperform the direct solver in CPU time (see 100

Table 1) on the 96×96×32 mesh. We are interested in how the convergence of these 101

methods depends on the frequency f in (1), the mesh size h, the partition Nx×Ny×Nz 102

or the subdomain size H and medium heterogeneity. At f = 1 the domain contains 103

nine wavelength along the x-direction, which corresponds to the problem on the unit 104

cube with the wavenumber 18π . 105

In the following tables, the numbers outside/inside parentheses are the iteration 106

numbers with/without plane waves, respectively, and a bar is used instead of 200 107

when the maximum iteration number is reached. We use e/w to represent the number 108

of elements per wavelength at the lowest velocity. The smallest iteration numbers 109

among the non-overlapping methods and those among the overlapping methods are 110

in bold. Note that for the FETI-DPH method with DtN preconditioner the amount 111

of work per iteration is about 1.5 times that for the others, and construction of the 112

preconditioner also leads to double LU factorizations in the setup stage. 113

In Tables 3 and 4, we increase the frequency with f h or f 3h2 [1] kept constant.

Table 3. Dependence on the frequency ( f h =constant)

t3.1f FL FD FH O0 O2 OD OR ON OO0 OO2

partition 3×3×1
t3.2

1
4 6 (15) 4 (8) 9 (15) 15 (21) 8 (14) 8 (20) 8 (12) 9 (20) 7 (15) 6 (14)

t3.3
1
2 15 (30) 9 (12) 18 (33) 29 (34) 19 (20) 23 (34) 12 (15) 24 (37) 12 (17) 11 (13)

t3.41 44 (51) 20 (23) 75 (93) 43 (48) 25 (25) 51 (58) 17 (17) 57 (66) 22 (25) 14 (15)
partition scaling with mesh: H/h = 8 (see also the first row for f = 1

4 )
t3.5

1
2 8 (46) 5 (30) 10 (73) 17 (71) 10 (50) 14 (73) 11 (33) 21 (103) 8 (55) 8 (51)

t3.61 9 (183) 7 (-) 11 (-) 21 (-) 12 (-) 27 (-) 15 (74) 152 (-) 16 (-) 15 (-)
partition scaling with mesh: H/h = 16 (see also the second row for f = 1

2 )
t3.71 39 (127) 32 (103) 74 (-) 59 (113) 27 (39) 76 (171) 26 (38) 114 (-) 26 (53) 22 (32)

114

We see that more iterations are usually needed for larger frequency except in the 115

middle of Table 4. 116

In Table 5, the frequency is fixed and the mesh is refined. From the table, the 117

iteration numbers with plane waves almost remain constant. 118
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Table 4. Dependence on the frequency ( f 3h2=constant)

t4.1f FL FD FH O0 O2 OD OR ON OO0 OO2

partition 3×3×1 (see also the first row in Table 3 for f = 0.25)
t4.20.40 12 (25) 6 (11) 14 (25) 30 (33) 18 (21) 18 (29) 11 (14) 19 (32) 9 (15) 9 (13)
t4.30.63 27 (41) 11 (15) 33 (49) 37 (42) 25 (26) 38 (46) 16 (17) 39 (50) 15 (20) 13 (14)

partition scaling with mesh: H/h = 8(see also the first row in Table 4 for f = 0.25)
t4.40.40 7 (36) 5 (23) 10 (54) 15 (58) 9 (40) 12 (60) 10 (29) 13 (73) 7 (40) 7 (40)
t4.50.63 7 (127) 5 (100) 9 (149) 14 (156) 8 (112) 14 (160) 11 (65) 20 (-) 7 (123) 7 (117)

partition scaling with mesh: H/h = 16 (see also the first row for f = 0.40)
t4.60.63 15 (89) 8 (53) 18 (119) 43 (125) 18 (75) 33 (113) 16 (35) 36 (112) 13 (75) 13 (75)

Table 5. Dependence on the mesh size ( f = 1
4 )

t5.1e/w FL FD FH O0 O2 OD OR ON OO0 OO2

partition 3×3×1 (see also the first row in Table 4 for e/w = 10)
t5.220 10 (19) 5 (9) 13 (20) 17 (26) 9 (17) 14 (28) 11 (15) 13 (27) 8 (16) 6 (16)
t5.340 15 (25) 6 (10) 18 (25) 21 (32) 11 (20) 21 (39) 15 (19) 19 (36) 9 (17) 8 (17)

partition H/h = 8 (see also the first row in Table 4 for e/w = 10)
t5.420 7 (21) 5 (12) 10 (32) 14 (47) 8 (32) 10 (46) 9 (25) 10 (44) 7 (29) 6 (30)
t5.540 6 (19) 4 (13) 9 (36) 14 (92) 7 (63) 9 (90) 9 (46) 9 (91) 7 (56) 6 (59)

partition H/h = 16 (see also the first row for e/w = 20)
t5.640 11 (34) 6 (15) 14 (47) 17 (60) 10 (38) 15 (63) 12 (28) 13 (52) 7 (33) 7 (35)

Next, we compare the iteration numbers for different partitions with both the 119

frequency and the mesh size fixed in Table 6. One can see that with plane waves

Table 6. Dependence on the partition

t6.1FL FD FH O0 O2 OD OR ON OO0 OO2

t6.2H
H0

f = 1
2 , mesh and velocity 48×48×16 and H0 partition 3×3×1

t6.31 15 (30) 9 (12) 18 (33) 28 (35) 19 (21) 22 (34) 12 (15) 23 (37) 11 (17) 11 (14)
t6.41

2 8 (47) 5 (30) 10 (73) 16 (72) 9 (51) 14 (75) 11 (34) 21 (105) 8 (62) 7 (57)
t6.51

4 4 (22) 4 (21) 7 (48) 10 (95) 7 (72) 7 (97) 8 (52) 11 (-) 6 (83) 5 (78)
t6.6f = 1, mesh and velocity 96×96×32 and H0 partition 3×3×1
t6.71 46 (54) 22 (24) 79 (97) 45 (49) 26 (26) 54 (61) 17 (18) 60 (69) 22 (26) 15 (16)
t6.81

2 43 (133) 35 (109) 82 (-) 63 (117) 28 (40) 82 (176) 27 (39) 136 (-) 28 (56) 24 (34)
t6.91

4 10 (184) 8 (-) 14 (-) 26 (-) 16 (40) 32 (-) 17 (-) - (-) 25 (-) 22 (-)
t6.10Nx f = 1, mesh and velocity 96×96×32 and partition Nx×1×1
t6.118 117 (125) 79 (75) 171 (184) 66 (70) 28 (28) 94 (99) 23 (24) 100 (104) 51 (46) 23 (25)
t6.1216 184 (-) 192 (199) - (-) 131 (137) 45 (47) - (-) 46 (47) - (-) 72 (81) 43 (45)
t6.1332 - (-) - (-) - (-) 172 (173) 87 (90) - (-) 86 (90) 182 (88) 148 (136) 84 (87)

120
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using more subdomains can both increase and decrease the iteration numbers. It is 121

interesting that for the strip-wise partition only the methods based on transmission 122

conditions (O0, O2, OR, OO0 and OO2) work reliably, though with substantial iter- 123

ation numbers, and the plane waves do not help much. 124

Last, we study the influence of the heterogeneity in the velocity. The experiments 125

are carried out on artificial velocity models to have high contrasts. The frequency is 126

fixed as f = 1
2 . The lowest velocity is fixed as cmin = 1,500 and different levels of 127

highest velocity cmax = ρcmin are considered. It can be seen from Table 7 that the 128

iteration numbers vary only little.

Table 7. Influence of medium heterogeneity

t7.1ρ FL FD FH O0 O2 OD OR ON OO0 OO2

mesh 48×48×16, partition 8×1×1 and c = cmin,cmax on subdomains
t7.21 58 (76) 37 (46) 83 (94) 60 (64) 28 (29) 70 (81) 27 (26) 69 (79) 37 (44) 24 (24)
t7.3102 28 (36) 42 (58) 30 (37) 37 (55) 26 (31) 37 (53) 27 (29) 63 (75) 15 (26) 13 (22)
t7.4104 32 (36) 49 (58) 33 (37) 45 (55) 26 (31) 43 (53) 29 (30) 71 (75) 19 (26) 17 (22)

as above except partition 6×6×2
t7.51 9 (90) 7 (62) 12 (124) 26 (79) 15 (39) 18 (97) 14 (35) 22 (117) 10 (46) 12 (34)
t7.6102 12 (59) 10 (104) 17 (51) 25 (78) 15 (46) 17 (67) 12 (34) 29 (100) 8 (42) 9 (37)
t7.7104 14 (58) 11 (104) 19 (51) 27 (79) 17 (47) 19 (68) 12 (34) 33 (100) 8 (42) 10 (37)

mesh 48×48×16, partition 1×8×1 and c = cmin,cmax on 8×1×1 cells
t7.81 70 (81) 40 (50) 105 (114) 73 (75) 27 (28) 74 (80) 28 (27) 62 (66) 34 (37) 24 (24)
t7.9102 51 (59) 30 (34) 69 (84) 58 (67) 26 (28) 56 (67) 23 (26) 51 (59) 26 (28) 23 (26)
t7.10104 52 (59) 30 (34) 70 (85) 58 (67) 26 (28) 56 (68) 23 (26) 51 (59) 26 (28) 23 (26)

mesh 84×84×24, partition 6×6×2 and c = cmin,cmax on 7×7×3 cells
t7.111 12 (105) 8 (65) 16 (144) 34 (96) 19 (41) 24 (121) 17 (37) 25 (111) 12 (46) 15 (34)
t7.12102 10 (68) 7 (34) 14 (107) 29 (109) 17 (48) 26 (111) 13 (45) 21 (106) 11 (47) 12 (40)
t7.13104 11 (68) 7 (34) 15 (107) 31 (109) 18 (48) 26 (110) 14 (45) 21 (107) 11 (47) 12 (40)

mesh 48×48×16, partition 6×6×2 and c random constants on elements
t7.14102 7 (16) 5 (10) 10 (21) 14 (61) 9 (41) 14 (60) 11 (37) 12 (59) 7 (35) 8 (38)
t7.15104 8 (15) 6 (9) 11 (20) 12 (67) 8 (46) 14 (67) 15 (61) 25 (86) 8 (39) 8 (42)

as above except partition 3×3×1
t7.161 22 (38) 10 (16) 26 (45) 28 (37) 19 (21) 26 (36) 13 (15) 27 (36) 15 (21) 12 (14)
t7.17102 11 (17) 6 (8) 15 (20) 18 (33) 11 (21) 16 (35) 15 (23) 16 (42) 7 (17) 8 (19)
t7.18104 12 (17) 6 (8) 16 (21) 15 (39) 9 (24) 18 (40) 16 (31) 17 (52) 8 (20) 9 (22)

129

4 Conclusions 130

For the SEG–SALT model on the cube domain, we get the following conclusions: 131

among the non-overlapping methods, the FETI-DPH method with DtN precondi- 132

tioner performs best in terms of iteration numbers. Among the overlapping methods, 133
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the optimized Schwarz method of second order is usually the best. With a fixed num- 134

ber of plane waves, all the methods can slow down for larger frequencies on properly 135

refined meshes. They also deteriorate for fixed frequency on finer meshes, unless 136

when using plane waves and more subdomains. A smaller subdomain size can both 137

increase and decrease the iteration numbers, and the experiments indicate the exis- 138

tence of some optimal choice. For strip-wise partitions, only the methods based on 139

transmission conditions work well, and plane waves do not help much. We also find 140

the performance of all the method is only little affected by the heterogeneity in the 141

velocity we considered, but other kinds of heterogeneity still need to be investigated. 142
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