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Adaptive mesh refinement techniques are well established and widely used for space 7

discretizations. In contrast, local time stepping is much less used, and the corre- 8

sponding techniques are less mature, needing delicate synchronization steps, which 9

involve interpolation, extrapolation or projection. These operations can have adverse 10

effects on the stability, and can also destroy important geometric properties of the 11

scheme, like for example the conservation of invariants. We give here a survey on 12

the intensive research performed in this direction over the last two decades. 13

1 Methods from the ODE Community 14

Local time stepping started in the ODE community with the development of split 15

Runge-Kutta methods with Rice [34]. Nowadays called multirate Runge-Kutta meth- 16

ods, these methods were first developed for naturally split systems of ordinary dif- 17

ferential equations y′ = b(y,z, t) and z′ = c(y,z, t), in which the z components need 18

to be integrated on a finer time mesh than the y components. One then uses a Runge- 19

Kutta method for the fast, so called active components with a small time step, and 20

another one for the slow, so called latent components, with a large time step, and uses 21

either interpolation or extrapolation for the missing values, depending on which of 22

the components are computed first, see [27]. 23

Multirate time integration methods were also proposed for linear multistep meth- 24

ods in [22], with two main approaches: fastest-first and slowest-first. Suppose an 25

implicit linear multistep method is used. In the fastest-first approach, one advances 26

the z components with small time steps h, and whenever one needs a component of 27

the slow part y, one uses a predictor step for it. Once the fine stepping scheme arrives 28

at a coarse step H, the slow solution component y is also computed. The major disad- 29

vantage of this approach is that it is very difficult to do adaptive time stepping. This 30

is easier in the slowest-first approach, where first the slow component is doing an 31

adaptive integration step, until one is accepted with step size H. Then the adaptive 32

fine integration is tried with small steps h, until one reaches with several accepted 33

small steps the coarse level H. For the slow adaptive step H however, one needs also 34
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an approximation of the fast component for coupled components, and the authors in 35

[22] say: “There are several possible ways to control the fast extrapolation error, none 36

of which is entirely satisfactory”. The stability properties of such multirate schemes 37

were analyzed in [35] for Backward Euler multirate schemes; see also [23]. 38

In contrast to the multirate methods, multirate extrapolation methods aim at 39

integrating systems of ODEs without a priori knowledge of which components need 40

finer time integration steps than others. A method based on Richardson extrapolation 41

was proposed in [13]: one computes approximations for all components for a time 42

step sequence {h1,h2,h3, . . .}, e.g. h2 =
h1
2 , h3 =

h1
3 ,. . . , and then builds the Richard- 43

son extrapolation table. As soon as a component has reached the desired accuracy 44

at step hk (an error estimate is available automatically in the Richardson table), 45

extrapolation for this component is marked inactive, and only components needing 46

further accuracy continue the extrapolation. Inactive components must then however 47

be approximated in order for the extrapolation to continue. Using interpolation from 48

the continuous approximation obtained from the Richardson extrapolation can com- 49

pletely destroy the extrapolation process, which is based on the same error expansion 50

for all the components. The authors in [13] propose instead an elegant approximation 51

from the asymptotic expansion assumption itself, and also introduce a defect control 52

to avoid that inactivation fails in certain situations. 53

2 Methods from the PDE Community 54

Local time stepping schemes in the PDE community started with experimental work, 55

see for example [28]. Such ad hoc solutions were quite different for parabolic and 56

hyperbolic PDEs. 57

Hyperbolic Problems: a first complete mathematical analysis of two space-time 58

adaptive schemes for the wave equation ut = ux, an interpolation based variant, and 59

the so called coarse mesh approximation method were given by Berger [2] (see also 60

[3], and an early analysis for a different technique based on finite volumes in [31]). 61

Using for example a three point explicit scheme, the interpolation based approach 62

starts with a coarse step at the interface, shown in red in Fig. 1 on the left, followed 63

by an interpolation for the fine grid values, shown in blue. In the coarse mesh ap- 64

proximation, one uses the coarse spatial mesh to compute small time steps Δ t, 2Δ t, 65

3Δ t, . . . at the interface, instead of interpolating these values, as indicated in Fig. 1 on 66

the right for the second step 2Δ t in red, where the blue value at Δ t has already been 67
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Fig. 1. Interpolation based approach on the left, and the coarse mesh method on the right
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Fig. 2. First energy-preserving local time stepping for the wave equation on the left, and sym-
plectic scheme for Maxwell’s equation on the right

computed. The author proves for the hyperbolic model problem ut = ux that both 68

approaches are stable for the Lax-Wendroff scheme, but stability for the Leapfrog 69

scheme can only be achieved with overlap. Elegant recursive versions of such algo- 70

rithms are in [33]. 71

A key new ingredient to obtain stability for a Leapfrog type scheme for the 72

locally adaptive solution of the wave equation can be found in the seminal papers 73

by Collino et al. in [7, 8]: the introduction of a discrete energy conservation. In pre- 74

sentations, this approach was always introduced with an impressive movie, where a 75

wave passes a locally refined patch, and everything looks fine for quite a long time 76

after the wave has passed, until suddenly an instability forms at the boundary of the 77

patch, and the numerical solution explodes, if a simple interpolation based scheme 78

is used. The method was first described for the 1d Maxwell system ut + vx = 0, 79

vt + ux = 0, which is equivalent to the 1d second order wave equation utt = uxx, and 80

can best be described with the original picture from [7] shown in Fig. 2 on the left. 81

Thinking just about the second order wave equation, discretized with a centered fi- 82

nite difference scheme both in space and time, we get the five point star, well visible 83

with the black squares in Fig. 2 (the triangles would be for the unknowns v we do not 84

consider here). Now all points can be computed with this star at time levels t2n+1 and 85

t2n+2, given the values at earlier time levels, except for the values in the dashed box. 86

The key idea of the energy preserving scheme is now to permit two different values 87

at x = 0 at even time levels t2n, and to introduce as additional equation the discrete 88

energy, which needs to be preserved. This leads naturally to a stable scheme, but it 89

requires the solution of a small linear system at the interface. Energy conservation 90

turned out to be a key tool for stability analysis, and is used now for other space- 91

time adaptive methods, see for example [11], where the authors introduce an unusual 92

energy, in order to analyze the stability of their space-time locally adaptive scheme. 93

A very elegant way of generalizing a symplectic integrator (which naturally pre- 94

serves a nearby energy) for variable step size integration was presented in [26], and 95

adapted to Maxwell’s system in [32]. The Störmer-Verlet scheme is symplectic for 96

these equations, and is shown in Fig. 2 on the right. Without refinement, the scheme 97

is visible in the right part under H2,E2: we see that first a half step denoted by 4 98

is performed for the magnetic field H, followed by a full step denoted by 5 for the 99

electric field E , and concluded by a second half step for H denoted by 6. In each of 100

these steps, the Störmer-Verlet scheme uses for H the newest values available from 101
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the other field E , and vice versa. It turns out that doing the same over the locally 102

refined region shown in Fig. 2 on the right, and performing the steps in the given 103

order, starting with 1 and ending with 9, and using each time the newest information 104

available, is still symplectic! Since symplectic schemes preserve a nearby energy, 105

this scheme has all the good stability properties needed. 106

In a finite volume or discontinuous Galerkin in the time domain setting (DGTD), 107

on unstructured meshes in space, the scheme in each subdomain with given time step 108

can be advanced until the new time value reaches that of its neighbor, according to 109

the stability constraint, see [12] for elastodynamics computations in the context of 110

ADER methods (Arbitrary high order, using high order DERivatives of polynomials). 111

Parabolic Problems are often integrated using implicit methods, which require 112

the solution of large systems of equations. These systems are obtained using the 113

same time step over the entire domain, and it is thus a priori not possible to use a 114

local time step. The first ideas to change this are based on domain decomposition 115

methods, where then interface values have to be predicted in some way, before the 116

subdomain problems are advanced in time by an implicit method. 117

A first interesting way to explicitly predict the interface values appeared in [9], 118

where a third spatial discretization size H is introduced, in addition to hl and hr, see 119

Fig. 3 on the left. The method then first does an explicit prediction step over the big 120

Δ t, stable because the corresponding spatial step H is big, as indicated in red. This 121

is followed by interpolation (in blue) to obtain all needed values at the interface, and 122

then on each side one can do implicit solves to advance the method. It is proved in 123

[9] that this scheme is stable for the heat equation with a centered finite difference 124

discretization in space, and forward/backward Euler in time, if Δ t ≤ 1
2 H2, and the 125

error satisfies the estimate max |err| ≤ C(h2
l + h2

r +H3 + Δ tl + Δ tr +HΔ t), which 126

shows impressively that the big prediction step Δ t, H only affects the accuracy in 127

higher order terms! 128

A different approach was proposed by Blum et al. [4], as shown in Fig. 3 on the 129

right. The authors do not consider local refinement in time and space, their main 130

interest is to break up a large linear system from the implicit time integration into 131

smaller ones, but their idea can also be used for local adaptation in time and space. 132

The key idea is to use overlap, predict all values needed at the interfaces using a 133

higher order extrapolation method, and then solve implicitly on the corresponding 134

subdomains to advance the method. The authors prove for the heat equation without 135
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Fig. 3. Explicit prediction of the interface values on an intermediate spatial grid on the left,
and by extrapolation with overlap on the right
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update coarse or not ?
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Fig. 4. A completely general space time mesh on the left, and the one-way and two way
approaches on the right
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local refinement, hl = hr = h and Δ tl = Δ tr = Δ t, that the Crank-Nicolson scheme 136

is stable, provided that Δ t ≤C
(

L
logL

)2
h2, where Lh is the overlap, and an error esti- 137

mate of the form O(Δ t2 +h2). So here increasing the overlap can lessen the stability 138

constraint on the time step. 139

If one wants to avoid any time step constraints, one can perform the coupling 140

fully implicitly, as proposed in [16]. Here, one simply writes the implicit scheme on 141

the fine and coarse subdomain, and the interpolation conditions into one big system 142

of linear equations, which is then solved. The authors show for a linear advection 143

reaction diffusion equation that a standard centered scheme with backward Euler in 144

time is unconditionally stable, and satisfies for Δ t = O(h) the error estimate O(Δ t + 145

h2) in 1d, but in 2d there is a loss of | logh| 12 , and in 3d a loss of 1√
h

in accuracy. 146

A more general approach based on domain decomposition can be found in [17]. 147

For the heat equation ut = uxx, and the decomposition of the domain Ω = (−1,1) 148

into two subdomains Ω1 = (−1,0) and Ω2 = (0,1), the authors propose to discretize 149

the coupling conditions u1(0) = u2(0), ∂xu1(0) = ∂xu2(0) using a conservative finite 150

volume discretization over non-matching time grids. They also obtain, for each vari- 151

ant of the method, a very large system of equations to solve, but propose to solve it 152

using one or several steps of an iterative Dirichlet-Neumann algorithm. They show 153

that these schemes are conservative, provided one stops the iteration after a Neumann 154

step, and satisfy an error estimate O(Δ t +h) under certain conditions. One can show 155

that one of their methods corresponds to the approach in [16]. 156

Space-Time Finite Element Methods consider the time direction like one of the 157

spatial directions, and discretize the problem directly in space-time by a finite ele- 158

ment method, which leads to a large discrete problem in space-time. These methods 159

have their roots in the work of C. Johnson and co-authors, see for instance [15] for 160

a review. Discontinuous Galerkin methods were used, and the adaptation was done 161

through a posteriori estimates. In the first versions of the method, the space-time 162

finite elements were still special, since they always had boundaries in time aligned 163

with the time direction, for example prisms. Completely general triangular meshes 164

in space time require special meshing techniques, since they need to satisfy certain 165

angle constraints, in order to avoid total global coupling in space-time, see [36] for 166

applications to Burger’s equation and elastodynamics. An impressive example of 167

such a mesh from [14] is reproduced in Fig. 4 on the left. A very recent contribution 168
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using discontinuous Galerkin methods can be found in these proceedings, see [30]. 169

One-Way and Two-Way Methods are in principle very different from all the 170

methods we considered earlier, since they have both a coarse and a fine mesh in parts 171

of the domain. They have their roots in weather and climate simulations, which of- 172

ten use a global model over a large region, for example the entire planet, and then 173

refined models over a small region, for example a country. The question is then how 174

to compute a refined solution based on the solution of the global coarse problem. In 175

[10] and [6], the so called one-way (or “offline”) and two-way (or “online”) meth- 176

ods are proposed. In the one-way method, the coarse model is first solved once and 177

for all, and stored. Then boundary data is extracted to be imposed on the boundary 178

of the smaller refined region. The simplest approach is to use Dirichlet conditions, 179

which can however lead to large errors. A more refined approach is to use so called 180

open boundary conditions, which are related to absorbing boundary conditions, but 181

different, see [6, 29]. Open boundary conditions lead in general to substantially more 182

accurate fine models. In the two way approach, one only performs one or a few time 183

steps of the coarse model, then solves the fine model in the refined region as before, 184

but updates the coarse result whenever a more accurate fine result is available, before 185

continuing the next coarse time step, see Fig. 4 on the right. If one simulates only one 186

time step of the coarse model before solving the fine model and uses Dirichlet condi- 187

tions, this approach is very much related to the first approach for hyperbolic problems 188

described earlier. 189

Schwarz waveform relaxation methods are the most flexible methods for solv- 190

ing evolution problems locally adaptively in space time, since they permit not only 191

refined time steps, but even different numerical methods, or different models in dif- 192

ferent regions. They were first described in [20] and are based on a decomposition 193

in space of the domain over which the evolution problem is posed and a subdomain 194

iteration in space-time: starting with an initial guess on each space-time interface 195

between subdomains, on each subdomain the evolution problem is solved over an 196

entire so called time window. Then information is exchanged between subdomains 197

using transmission conditions, and the subdomain problems are solved again and 198

again until a suitable matching is reached. So the price to pay for this flexibility and 199

generality is the iteration. The method from [17] we have seen earlier is in this class 200

of methods, but much faster convergence can be obtained when optimized transmis- 201

sion conditions are used, see [1, 18, 21, 24, 25], and references therein. Very general 202

non-matching space-time grids can be coupled like this using a projection algorithm 203

with optimal linear complexity from [19]. For recent realistic applications in a com- 204

plex setting, see [5]. 205

Bibliography 206

[1] D. Bennequin, M. J. Gander, and L. Halpern. A homographic best approxi- 207

mation problem with application to optimized Schwarz waveform relaxation. 208

Math. of Comp., 78(265):185–232, 2009. 209



Page 405

UN
CO

RR
EC

TE
D

PR
O
O
F

Locally Adaptive Time Stepping Schemes

[2] M. Berger. Stability of interfaces with mesh refinement. Math. of Comp., 45: 210

301–318, 1985. 211

[3] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial 212

differential equations. J. Comp. Phys., 53:484–512, 1984. 213

[4] H. Blum, S. Lisky, and R. Rannacher. A domain splitting algorithm for 214

parabolic problems. Computing, 49:11–23, 1992. 215

[5] M. Borrel, L. Halpern, and J. Ryan. Euler - Navier-Stokes coupling for aeroa- 216

coustics problems. In A. Kuzmin, editor, Computational Fluid Dynamics 2010, 217

ICCFD6, pages 427–434. Springer-Verlag, 2010. 218

[6] S. Cailleau, V. Fedorenko, B. Barnier, E. Blayo, and L. Debreu. Comparison 219

of different numerical methods used to handle the open boundary of a regional 220

ocean circulation model of the bay of biscay. Ocean Modelling, 25:1–16, 2008. 221

[7] F. Collino, T. Fouquet, and P. Joly. A conservative space-time mesh refinement 222

method for the 1d wave equation. part I: construction. Numer. Math., 95:197– 223

221, 2003. 224

[8] F. Collino, T. Fouquet, and P. Joly. A conservative space-time mesh refinement 225

method for the 1d wave equation. part II: analysis. Numer. Math., 95:223–251, 226

2003. 227

[9] C. Dawson, Q. Du, and T. Dupont. A finite difference domain decomposition 228

algorithm for numerical solution of the heat equation. Math. Comp., 57(195): 229

63–71, 1991. 230

[10] L. Debreu and E. Blayo. Two-way embedding algorithms: a review. Ocean 231

Dynamics, 58:415–428, 2008. 232

[11] J. Diaz and M. J. Grote. Energy conserving explicit local time-stepping for 233

second-order wave equations. SIAM J. Scientific Computing, 31:1985–2014, 234

2009. 235

[12] M. Dumbser, M. Käser, and E.F. Toro. An arbitrary high-order discontinu- 236

ous Galerkin method for elastic waves on unstructured meshes V: Local time 237

stepping and p-adaptivity. Geophysical Journal International, 171(2):695–717, 238

2007. 239

[13] Ch. Engstler and Ch. Lubich. Multirate extrapolation methods for differential 240

equations with different time scales. Computing, 58:173–185, 1997. 241

[14] J. Erickson, D. Guoy, J.M. Sullivan, and A. Üngör. Building spacetime meshes 242

over arbitrary spatial domains. Eng. with Comp., 20:342–353, 2005. 243

[15] K. Eriksson, C. Johnson, and A. Logg. Adaptive computational methods for 244

parabolic problems. In Encyclopedia of Computational Mechanics, 2004. 245

[16] R. E. Ewing, R. D. Lazarov, and A. T. Vassilev. Finite difference scheme 246

for parabolic problems on composite grids with refinement in time and space. 247

SIAM J. Numer. Anal., 31:1605–1622, 1994. 248

[17] I. Faille, F. Nataf, F. Willien, and S. Wolf. Two local time stepping schemes for 249

parabolic problems. ESAIM: proceedings, 29:58–72, 2009. 250

[18] M. J. Gander and L. Halpern. Optimized Schwarz waveform relaxation meth- 251

ods for advection reaction diffusion problems. SIAM J. Numer. Anal., 45(2): 252

666–697, 2007. 253



Page 406

UN
CO

RR
EC

TE
D

PR
O
O
F

Martin J. Gander, Laurence Halpern

[19] M. J. Gander and C. Japhet. An algorithm for non-matching grid projec- 254

tions with linear complexity. In M. Bercovier, M.J. Gander, D. Keyes, and 255

O.B. Widlund, editors, Domain Decomposition Methods in Science and Engi- 256

neering XVIII, pages 185–192. Springer Verlag LNCSE, 2008. 257

[20] M. J. Gander and A. M. Stuart. Space-time continuous analysis of waveform 258

relaxation for the heat equation. SIAM J. Sci. Comput., 19(6):2014–2031, 1998. 259

[21] M. J. Gander, L. Halpern, and F. Nataf. Optimal Schwarz waveform relaxation 260

for the one dimensional wave equation. SIAM Journal of Numerical Analysis, 261

41(5):1643–1681, 2003. 262

[22] C.W. Gear and D.R. Wells. Multirate linear multistep methods. BIT, 24:484– 263

502, 1984. 264

[23] M. Günter, A. Kværnø, and P. Rentrop. Multirate partitioned Runge-Kutta 265

methods. BIT, 38(2):101–112, 1998. 266

[24] L. Halpern. Non conforming space-time grids for the wave equation: a new 267

approach. Monografías del Seminario Matemático García de Galdeano, 31: 268

479–495, 2004. 269

[25] L. Halpern. Local space-time refinement for the one dimensional wave equa- 270

tion. J. of Comp. Acoustics, 13(3):153–176, 2005. 271

[26] D.J. Hardy, D.I. Okunbor, and R.D. Skeel. Symplectic variable step size inte- 272

gration for N-body problems. Appl. Numer. Math., 29(5):19–30, 1999. 273

[27] A. Kværno and P. Rentrop. Low order multirate Runge-Kutta methods in elec- 274

tric circuit simulation, 1999. 275

[28] R. Löhner, K. Morgan, and O. C. Zienkiewicz. The use of domain splitting 276

with an explicit hyperbolic solver. Computer Methods in Applied Mechanics 277

and Engineering, 45:313–329, 1984. 278

[29] V. Martin and E. Blayo. Revisiting the open boundary problem in computa- 279

tional fluid dynamics. In R. Bank, M. Holst, O.B. Widlund, and J. Xu, editors, 280

Domain Decomposition Methods in Science and Engineering XX. Springer- 281

Verlag, 2012. 282

[30] M. Neumüller. Space-time DG methods. In R. Bank, M. Holst, O.B. Widlund, 283

and J. Xu, editors, Domain Decomposition Methods in Science and Engineering 284

XX. Springer Verlag, 2012. 285

[31] S. Osher and R. Sanders. Numerical approximations to nonlinear conservation 286

laws with locally varying time and space grids. Math. of Comp., 41(164):321– 287

336, 1983. 288

[32] S. Piperno. Symplectic local time-stepping in non-dissipative DGTD methods 289

applied to wave propagation problems. ESAIM: Mathematical Modelling and 290

Numerical Analysis, 40(5):815–841, 2006. 291

[33] F. Pretorius and L. Lehner. Adaptive mesh refinement for characteristic codes. 292

J. Comp. Phys., 198:10–34, 2004. 293

[34] R. C. Rice. Split Runge-Kutta methods for simulatneous equations. J. Res. 294

Natl. Bur. Standards, 64B:151–170, 1960. 295

[35] S. Skelboe and P. U. Andersen. Stability properties of backward Euler multirate 296

formulas. SIAM J. Sci. Stat. Comp., 10:1000–1009, 1989. 297



Page 407

UN
CO

RR
EC

TE
D

PR
O
O
F

Locally Adaptive Time Stepping Schemes

[36] A. Üngör and A. Sheffer. Tent-pitcher: A meshing algorithm for space-time dis- 298

continuous galerkin methods. In In proc. 9th int’l. meshing roundtable, pages 299

111–122, 2000. 300




