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1 Introduction 7

The solution of partial differential equations (PDEs) with disparate space and time 8

scales often benefit from the use of nonuniform meshes and adaptivity to successfully 9

track local solution features. 10

In this paper we consider the problem of grid generation using the so–called 11

equidistribution principle (EP) [3] and domain decomposition (DD) strategies. In 12

the time dependent case, the EP is used to evolve an initial (often uniform) grid by 13

relocating a fixed number of mesh nodes. This leads to a class of adaptive meth- 14

ods known as r–refinement or moving mesh methods. A thorough recent review of 15

moving mesh methods for PDEs can be found in the book [11]. 16

In general, the appropriate grid for a particular problem depends on features of 17

the (typically unknown) solution of the PDE. Here we will focus on the grid genera- 18

tion problem for the time independent, given function u(x) of a single spatial variable 19

x ∈ [0,1]. Given some positive measure M(x) of the error or difficulty in the solution 20

u(x), the EP requires that the mesh points are chosen so that the error contribution on 21

each interval [xi−1,xi] is the same. The function M is known as the monitor or mesh 22

density function. Mathematically, we may write this as 23

∫ xi

xi−1

M(x̃)dx̃≡ 1
N

∫ 1

0
M(x̃)dx̃ or

∫ x(ξi)

0
M(x̃)dx̃ =

i
N

θ ≡ ξiθ , (EP)

where x(ξi) = xi and θ ≡ ∫ 1
0 M(x̃)dx̃ is the total error in the solution. The EP defines 24

a one–to–one co-ordinate transformation between the physical co–ordinate x and 25

underlying computational co–ordinate ξ . This will naturally concentrate mesh points 26

where the error in the solution is large. 27

Differentiating the continuous formulation of EP gives the required mesh trans- 28

formation, x(ξ ), as the solution of the nonlinear boundary value problem 29

d
dξ

{
M(x(ξ ))

d
dξ

x(ξ )
}
= 0, x(0) = 0 and x(1) = 1. (1)
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If M is chosen properly, we expect the solution u(x) to be easy to represent on 30

a uniform grid in ξ . In general, the physical solution u is not known and instead 31

satisfies a PDE. In that case, the mesh transformation, satisfying (1), and the physical 32

PDE, are coupled and often solved in an iterative fashion. 33

We will assume (1) has a unique solution, see [8] for details. In [8], the authors 34

consider the solution of (1) and time dependent extensions using classical parallel, 35

optimized and optimal Schwarz methods. In this paper we continue the work of [8] 36

by providing details of the nonlinear and linearized alternating Schwarz approaches. 37

The reader is also referred to the experimental papers [7, 9, 10], which proposed 38

various strategies to couple DD and moving meshes. See [1, 2, 4–6, 12–15] for a 39

discussion of DD methods applied to other nonlinear PDEs. 40

In Sect. 2 we propose a new nonlinear alternating Schwarz method to solve (1) 41

and prove convergence in L∞. In Sect. 3 we avoid the nonlinear subdomain problems 42

and propose and analyze a linearized alternating Schwarz algorithm. Brief numerical 43

results are presented in the final section. 44

2 A Nonlinear Alternating Schwarz Method 45

In [8] we consider the solution of (1) by a parallel, classical nonlinear Schwarz it-
eration. On each subdomain a nonlinear BVP is solved and Dirichlet transmission
conditions are used at the subdomain interfaces. Convergence of the iteration can be
accelerated if we are willing to compute sequentially. Consider the nonlinear alter-
nating Schwarz iteration

(M(xn
1)x

n
1,ξ )ξ = 0, ξ ∈Ω1, (M(xn

2)x
n
2,ξ )ξ = 0, ξ ∈Ω2,

xn
1(0) = 0, xn

2(α) = xn
1(α), (2)

xn
1(β ) = xn−1

2 (β ), xn
2(1) = 1,

where Ω1 = (0,β ) and Ω2 = (α,1) with α < β . 46

Direct integration and enforcing the boundary conditions gives the following im- 47

plicit representation of the subdomain solutions. 48

Lemma 1. The subdomain solutions on Ω1 and Ω2 of (2) are given implicitly as 49

∫ xn
1(ξ )

0
M(x̃)dx̃ =

ξ
β

∫ xn−1
2 (β )

0
M(x̃)dx̃, (3)

and 50∫ xn
2(ξ )

0
M(x̃)dx̃ =

1− ξ
1−α

∫ xn
1(α)

0
M(x̃)dx̃+

ξ −α
1−α

∫ 1

0
M(x̃)dx̃. (4)

Let ‖ · ‖∞ denote the usual L∞ norm. We now relate xn
1,2 to xn−1

1,2 and obtain the fol- 51

lowing result. 52
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Theorem 1. Assume M is differentiable and there exist positive constants a and A 53

satisfying 0 < a ≤ M(x) ≤ A < ∞. Then the alternating Schwarz iteration (2) con- 54

verges for any initial guess x0
2(β ) and we have the error estimates 55

||x− xn+1
1 ||∞ ≤ ρn A

a
|x(β )− x0

2(β )|, ||x− xn+1
2 ||∞ ≤ ρn A

a
|x(α)− x0

1(α)|, (5)

with contraction factor ρ := α
β

1−β
1−α < 1. 56

Proof. Evaluating (3) at ξ = α and using the expression for xn−1
2 (β ) from (4) we 57

have 58∫ xn
1(α)

0
M dx̃ =

α
β

{
β −1
α−1

∫ xn−1
1 (α)

0
M dx̃+

β −α
1−α

∫ 1

0
M dx̃

}
. 59

Defining the two quantities 60

Kn
1 =

∫ xn
1(α)

0
M(x̃)dx̃ and C =

∫ 1

0
M(x̃)dx̃, 61

we obtain the linear iteration 62

Kn
1 =

α
β

β −1
α−1

Kn−1
1 +

α
β

β −α
1−α

C. (6)

This iteration converges with rate ρ := α
β

1−β
1−α < 1, and has the limit 63

K∗1 =
α
β

1−β
1−α

K∗1 +
α
β

β −α
1−α

C =⇒ K∗1 = αC. (7)

Since the monodomain solution also satisfies 64

∫ x(α)

0
M(x̃)dx̃ = αC,

and M(x) ≥ a > 0, we have convergence at the interface to the correct limit. 65

Subtracting (6) from (7) we have 66

∫ x(α)

xn
1(α)

M(x̃)dx̃ = ρn
∫ x(α)

x0
1(α)

M(x̃)dx̃. (8)

Subtracting (4) from the equivalent expression for the exact solution and using (8) 67

we obtain 68

∫ x(ξ )

xn+1
2 (ξ )

M(x̃)dx̃ =
1− ξ
1−α

∫ x(α)

xn
1(α)

M(x̃)dx̃ =
1− ξ
1−α

ρn
∫ x(α)

x0
1(α)

M(x̃)dx̃.

Taking the modulus and using the boundedness of M we obtain, for all ξ ∈ [α,1], 69

|x(ξ )− xn+1
2 (ξ )| ≤ 1− ξ

1−α
ρn A

a
|x(α)− x0

1(α)|. 70

Taking the supremum gives the second estimate in (5). The estimate on subdomain
one is obtained similarly. 	
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3 A Linearized Alternating Schwarz Method 71

We may avoid nonlinear solves on each subdomain in (2) by considering a linearized
alternating Schwarz iteration,

(M(xn−1
1 )xn

1,ξ )ξ = 0, ξ ∈Ω1 (M(xn−1
2 )xn

2,ξ )ξ = 0, ξ ∈Ω2

xn
1(0) = 0, xn

2(α) = xn
1(α), (9)

xn
1(β ) = xn−1

2 (β ), xn
2(1) = 1.

At iteration n we evaluate the nonlinear diffusion coefficient M using the solution 72

obtained from the previous iterate and obtain the updated solution by a single linear 73

BVP solve on each subdomain. A simple calculation yields the following represen- 74

tation of the subdomain solutions. 75

Lemma 2. The subdomain solutions of (9) are given by 76

xn
1(ξ ) = xn−1

2 (β )

∫ ξ
0

dξ̃
M(xn−1

1 (ξ̃ ))∫ β
0

dξ̃
M(xn−1

1 (ξ̃ ))

, (10)

and 77

xn
2(ξ ) = xn

1(α)+ (1− xn
1(α))

∫ ξ
α

dξ̃
M(xn−1

2 (ξ̃ ))∫ 1
α

dξ̃
M(xn−1

2 (ξ̃ ))

. (11)

Convergence of the linearized alternating Schwarz iteration (9) follows by proving 78

convergence at the interior interfaces and showing we have converged to the correct 79

limit. 80

Theorem 2. Under the assumptions of Theorem 1, the linearized alternating Schwarz 81

iteration (9) converges for any smooth initial guesses x0
1(ξ ) and x0

2(ξ ). 82

Proof. Evaluating the subdomain solutions (10) and (11) at the interfaces, we obtain 83

for the interface values the iterations 84

xn
1(α) = C n

α xn−1
1 (α)+Dn

α and xn
2(β ) = C n

β xn−1
2 (β )+Dn

β ,

where 85

C n
α =

∫ 1
β

dξ̃
M(xn−2

2 (ξ̃ ))∫ 1
α

dξ̃
M(xn−2

2 (ξ̃ ))

∫ α
0

dξ̃
M(xn−1

1 (ξ̃ ))∫ β
0

dξ̃
M(xn−1

1 (ξ̃ ))

, Dn
α =

∫ β
α

dξ̃
M(xn−2

2 (ξ̃ ))∫ 1
α

dξ̃
M(xn−2

2 (ξ̃))

∫ α
0

dξ̃
M(xn−1

1 (ξ̃ ))∫ β
0

dξ̃
M(xn−1

1 (ξ̃))

,

and 86

C n
β =

∫ 1
β

dξ̃
M(xn−1

2 (ξ̃ ))∫ 1
α

dξ̃
M(xn−1

2 (ξ̃ ))

∫ α
0

dξ̃
M(xn−1

1 (ξ̃ ))∫ β
0

dξ̃
M(xn−1

1 (ξ̃))

, Dn
β =

∫ β
α

dξ̃
M(xn−1

2 (ξ̃))∫ 1
α

dξ̃
M(xn−1

2 (ξ̃ ))

.
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It is possible to show the quantities C n
α ,D

n
α ,C

n
β and Dn

β satisfy 87

0 < C n
α ,C

n
β ≤ ρ < 1, 0 < Dn

α ≤ Dα < 1, and 0 < Dn
β ≤ Dβ < 1, 88

where 89

ρ :=
1

1+ a
A

β−α
1−β

1

1+ a
A

β−α
α

, Dα :=
1

1+ a
A

β−α
α

1

1+ a
A

1−β
β−α

, and Dβ :=
1

1+ a
A

1−β
β−α

. 90

To establish these bounds let F(x) := 1/M(x). The assumptions on M imply 1
A ≤ 91

F(x)≤ 1
a . As an example, the upper and lower bounds on F then imply 92

∫ α
0 F(x(ξ ))dξ∫ β
0 F(x(ξ ))dξ

≤ 1

1+ a
A

β−α
α

and

∫ 1
β F(x(ξ ))dξ∫ 1
α F(x(ξ ))dξ

≤ 1

1+ a
A

β−α
1−β

. 93

Consider now the iteration for xn
1(α) only. Using the recursion, we have 94

xn
1(α) =

n

∏
k=1

C k
α x0

1(α)+
n

∑
k=1

Dk
α

(
n

∏
l=k+1

C l
α

)
, 95

where the product in the k–th term of the sum is assumed to be one if the lower index 96

of the product exceeds the upper index. Since ρ < 1, the product multiplying x0
1(α) 97

must go to zero as n→ ∞. The infinite series converges by direct comparison with 98

∑∞
k=1 Dα ρk−1. A corresponding argument applies to show convergence of xn

2(β ). 99

Denote the limits of {xn
1(α)} and {xn

2(β )} as x̃α and x̃β respectively. Since the in-
terface values converge, the subdomain solutions defined by (9) converge to functions
x̃1 and x̃2 both satisfying the nonlinear PDE. Since x̃1(α) = x̃2(α) and x̃1(β )= x̃2(β ),
both x̃1 and x̃2 satisfy the same PDE in the overlap with the same two boundary con-
ditions, and by assumption of uniqueness, x̃1 and x̃2 must coincide in the overlap. One
can therefore simply glue these two solutions together in order to obtain a function
which satisfies the PDE everywhere, and also the two original boundary conditions
at 0 and 1. Again by uniqueness, this must now be the desired solution. 	


4 Numerical Results 100

In this section we numerically demonstrate the results above using a simple finite 101

difference discretization of the BVP (1) and iterations (2) and (9). We also include 102

results using nonlinear and linearized parallel Schwarz algorithm from [8] for com- 103

parison. Details of the numerical approach and convergence of the discrete DD algo- 104

rithm will be considered elsewhere. 105

We solve EP for u(x) = (1− eλ x)/(1− eλ ) on the interval x ∈ [0,1]. For large 106

values of λ this function exhibits a boundary layer at x = 1. We use the arc–length 107

monitor function M(x,u(x)) =
√

1+ u2
x and choose λ = 20. The errors reported in 108

Figs. 1 and 2 are the differences between the single domain numerical solution and 109

the domain decomposition solution over the first subdomain. 110
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Fig. 1. Error versus # of DD iterations
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Fig. 2. Error versus # of linear solves

In Fig. 1 we solve (1) on two subdomains with a 5 % overlap using linearized and 111

nonlinear, parallel and alternating Schwarz iterations. We see that the convergence 112

of the alternating iteration is faster than the parallel algorithms for both the nonlin- 113

ear and linearized versions of the algorithms. In terms of number of iterations the 114

nonlinear algorithms outperform the linearized variants. It is important, however, to 115

keep in mind that each nonlinear DD iteration is more expensive than its linearized 116

counterpart. In Fig. 2 we repeat the convergence history as a function of a work unit 117

which we take to be the cost of a linear solve. Each iteration of a linearized Schwarz 118

algorithm requires one linear solve while each iteration of a nonlinear Schwarz al- 119

gorithm requires many linear solves – one for each Newton step. Each linear solve 120

required by both algorithms has roughly the same cost due to the structure of the Ja- 121

cobian matrix. As a function of the work effort the efficacy of the linearized Schwarz 122

algorithms is obvious for this example. 123

In Table 1 we demonstrate the quality of the computed grids by calculating the 124

‖ · ‖∞ error between u(x) and the piecewise linear interpolant for u(x) on grids ob- 125

tained by the nonlinear and linearized alternating Schwarz algorithms, as a function 126

of the number of iterations. The last column shows the interpolation error obtained 127

with the single domain grid: the solution of (1) computed on a uniform ξ grid con- 128

sisting of 101 points. All interpolation errors are computed using a very fine grid. The 129

results show that the nonlinear Schwarz method is quickly able to find an appropriate 130

grid transformation after a few DD iterations. The linearized Schwarz algorithm, as 131

expected, requires more DD iterations but is able to find a quality grid efficiently due 132

to the smaller relative cost per iteration. 133

t1.Iterations 1 3 5 7 9 11 ∞
t1.Nonlinear 0.3625 0.0498 0.0462 0.0436 0.0449 0.0517 0.0366
t1.Linearized 0.3625 0.1290 0.1019 0.0625 0.0453 0.0435 0.0366

Table 1. Interpolation errors for the grids obtained by Schwarz iterations.
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Fig. 3. Linearized Schwarz: error for vary-
ing C
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Fig. 4. Non-linear versus linearized
Schwarz with varying C

The quantities ρ ,Dα and Dβ corresponding to iteration (9) and the error estimates 134

in Theorem 1 indicate a dependence on the shape of M for the linearized alternating 135

Schwarz iteration. To test this effect, we consider the performance of (9) for M(x) = 136

C(x−0.5)2+1. The parameter C controls the ratio a/A. As C→∞, a/A→ 0, and the 137

contraction rate could diminish. This is demonstrated in Fig. 3. Figure 4 illustrates 138

the effect of changing the value of C on both the nonlinear and linearized Schwarz 139

algorithms. We see that the linearized Schwarz algorithm is affected more by an 140

increase in C. 141

In summary, we have proposed, analyzed and provided brief numerical com- 142

parisons for two alternating Schwarz algorithms to solve the steady grid generation 143

problem using the EP. Ongoing work includes the analysis of DD approaches to 144

moving mesh PDEs for the time dependent mesh generation problem, the discrete 145

analysis and extensions to higher dimensions. 146
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