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1 Introduction 10

In many applications the viscous terms become only important in parts of the compu- 11

tational domain. A typical example is the flow of air around the wing of an airplane. 12

It can then be desirable to use an expensive viscous model only where the viscosity is 13

essential for the solution and an inviscid one elsewhere. This leads to the interesting 14

problem of coupling partial differential equations of different types. 15

The purpose of this paper is to explain several coupling strategies developed over 16

the last decades, and to introduce a systematic way to compare them. We will use the 17

following simple model problem to do so: 18

Ladu :=−νu′′+ au′+ cu = f in Ω = (−L1,L2),
B1u = g1 on x =−L1,
B2u = g2 on x = L2,

(1)

where ν and c are strictly positive constants, a,g1,g2 ∈ R, f ∈ L2(Ω), L1,L2 > 0 19

and B j , j = 1,2 are suitable boundary operators of Dirichlet, Neumann or Robin 20

type. If in part of Ω , the diffusion plays only a minor role, one would like to replace 21

the viscous solution u by an inviscid approximation, which leads to two separate 22

problems: a viscous problem on, say, Ω− := (−L1,x0 + δ ), where δ stands for the 23

size of the overlap and x0 the position of the interface, 24

Laduad = f in Ω−,
B1uad = g1 on x =−L1,

(2)

and a pure advection reaction problem on Ω+ := (x0,L2), 25

Laua := au′a + cua = f in Ω+. (3)

Coupling conditions for (2) and (3) need then to be chosen to connect the two sub- 26

problems, and there are many coupling strategies in the literature to choose from. 27

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
Lecture Notes in Computational Science and Engineering 91,
DOI 10.1007/978-3-642-35275-1__51, © Springer-Verlag Berlin Heidelberg 2013

mailto:martin.gander@unige.ch
mailto:veronique.martin@u-picardie.fr


Page 460

UN
CO

RR
EC

TE
D

PR
O
O
F

Martin J. Gander and Véronique Martin

These strategies have been developed over the last decades for various applications, 28

and sometimes the two different models are really due to different physical phe- 29

nomena, like in fluid-structure interaction problems. In those cases, the coupling 30

conditions are given by the physics, and they are in general unique. We are how- 31

ever interested in problems where the different equations are only chosen in order to 32

achieve computational savings, as for example in [5]: 33

The main goal of this paper is to present a computational method for the 34

coupling of two distinct mathematical models describing the same physical 35

phenomenon. 36

For such couplings, it is quite difficult to decide which coupling strategy from the lit- 37

erature to choose, since every coupling strategy leads to a different solution, and it is 38

not clear a priori which one is the best one. Furthermore, there are neither guidelines 39

nor quantitative comparisons in the literature in order to help with this decision. In 40

order to compare the quality of the various coupling strategies, we propose in this 41

paper a first very natural measure to compare different coupling strategies in such 42

situations, namely to investigate how close the coupled solution for (2) and (3) is to 43

the fully viscous solution of (1). The idea behind this quality measure is that in prin- 44

ciple the viscosity should be taken into account everywhere, and hence it is the more 45

expensive viscous solution that we are interested in. However, for computational sav- 46

ings, one would like to use a simpler, non-viscous model whenever the viscosity does 47

not play an important role. In a more general situation, we thus would propose as a 48

natural quality measure to compare the coupled solution to the solution of the expen- 49

sive model used throughout the entire domain, and the closer the coupled solution is 50

to this expensive one, the better the coupling conditions are. 51

We describe in this paper in detail several coupling strategies for the viscous/in- 52

viscid coupling, and compare them by testing how close the coupled solution is to 53

the fully viscous one: in Sect. 2 we present an overlapping coupling method based on 54

optimization. In Sect. 3 we present several non-overlapping coupling strategies based 55

on coupling conditions at the interface between the two regions. In both sections, the 56

position of the interface needs to be known a priori. This is in contrast to Sect. 4, 57

where we present an adaptive coupling strategy which detects the partition into vis- 58

cous and non-viscous regions automatically. We will see that our quality measure 59

allows us to effectively compare these different strategies, and we find that the best 60

coupled solutions are obtained by judiciously chosen transmission conditions. 61

2 Methods Based on Overlap and Optimization 62

In this section, we present a very general overlapping coupling strategy that was pro- 63

posed in [5], where the authors considered as the viscous model the incompressible 64

Navier-Stokes equations, while the inviscid model was the potential equation (the 65

assumption of a small vorticity is made). 66

For the model problem (1), the coupling strategy works as follows: in each subdo- 67

main, we solve the corresponding equation with a Dirichlet condition at the artificial 68
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interface, 69

uad(x0 + δ ) = λ1 and if a > 0, ua(x0) = λ2, 70

and then determine (λ1,λ2) to be a solution of the optimization problem 71

J(λ1,λ2) := ‖uad−ua‖2
L2(x0,x0+δ ) −→ min . 72

The authors in [5] solve this optimization problem using a gradient type method, so 73

that the adjoint equation also needs to be computed. 74

This coupling strategy based on optimization has been studied mathematically in 75

[10] and [2] for our model problem in 2D, see also [6] for a complete description 76

of the algorithms for the model problem, and also for the coupling of Navier-Stokes 77

equations with a Darcy model, or the coupling of the Stokes and potential equations. 78

In [2] other cost functionals to be minimized are proposed. 79

In order to evaluate the quality of this coupling strategy, we compute numerically 80

the error between the viscous and the coupled solution as a function of the viscosity 81

for the case L1 = L2 = 1, x0 =−0.6, f (x) = e−1,000(x+1)2
and c= 1. We use a centered 82

finite difference scheme to discretize the two differential operators, with mesh size 83

2×10−5. We consider the case of a positive velocity, a= 1, with g1 = 0, g2 = 0, B1 = 84

Id and B2 = ∂x− (a−√a2 + 4νc)/2ν (the absorbing boundary operator) and the 85

case of a negative velocity, a=−1, with g1 = 0, g2 = 0, B1 = Id and B2 = Id. In all 86

experiments presented in this paper, the error in the advection domain ‖u−ua‖Ω+ is 87

O(ν) whatever is the coupling strategy, which is natural, since the advection equation 88

is used instead of the advection-diffusion equation. The numerical error estimate for 89

this overlapping technique in the viscous domain Ω− is given in Table 1. We see that

a > 0 a < 0
Minimization of J O(ν3/2) O(ν)

Table 1. Overlapping coupling with optimization: numerically computed error estimate for
‖u−uad‖Ω−

90

for a < 0, this coupling strategy (like most of the ones presented in this paper) gives 91

a result O(ν), since information is coming from the inviscid approximation in Ω+
92

to Ω−, and in Ω+ the error ‖u−ua‖Ω+ is O(ν). 93

The non overlapping case δ = 0 is also considered in [10], namely 94

G(λ1,λ2) = σ(a)(uad(x0)−ua(x0))
2 +(φ1−φ2)

2, 95

where φ1 = −νu′ad(x0)+ auad(x0) and φ2 = aua(x0) (see Sect. 3.1) and σ(a) = 1 if 96

a > 0, 0 otherwise. Using the same numerical setting, we obtain for ν small the error 97

estimates shown in Table 2. 98
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a > 0 a < 0
Minimization of G O(ν3/2) O(ν)

Table 2. Non overlapping case with optimization: numerically computed error estimates for
‖u−uad‖Ω−

3 Methods Based on Coupling Conditions 99

From now on we assume that there is no overlap, δ = 0. The coupling techniques in 100

this section are based on coupling conditions, and we will present three strategies: 101

the first one is based on singular perturbation, the second one on boundary layer 102

corrections, and the last one on the factorization of the operator. 103

3.1 Coupling Conditions from Singular Perturbation 104

In [9] the authors propose to find coupling conditions for (2) and (3) by introducing 105

a regularization of the inviscid problem using a small artificial viscosity ε . They thus 106

consider 107

−νw′′ε + aw′ε + cwε = f on (−L1,x0),

−εv′′ε + av′ε + cvε = f on (x0,L2).
(4)

This coupling problem which involves two elliptic equations needs to be completed 108

by two boundary conditions. The first one simply states continuity of the solution: 109

wε(x0) = vε(x0). For the second one, two choices are possible : we can impose the 110

continuity of the normal flux, νwε
′(x0) = εvε

′(x0) (such boundary conditions are 111

called variational conditions) or we impose the continuity of the normal derivative, 112

wε
′(x0) = vε

′(x0) (called non variational conditions). Letting ε tend to 0, it has been 113

rigorously proved in [9] that wε (resp. vε ) tends to uad (resp. ua). At the boundary, 114

with the variational conditions, the limiting solution satisfies 115

(−νu′ad + auad)(x0) = aua(x0), uad(x0) = ua(x0) for a > 0,

(−νu′ad + auad)(x0) = aua(x0), for a < 0,
(5)

while the non variational conditions lead to 116

uad(x0) = ua(x0), u′ad(x0) = u′a(x0), for a > 0,

uad(x0) = ua(x0), for a < 0.
(6)

Rigorous error estimates comparing the coupled solutions obtained with these ap- 117

proaches were obtained in [7], and they are summarized in Table 3, where we ob- 118

serve that the non variational conditions lead to a better coupled solution for positive 119

advection than the variational ones, while for negative advection, again there is no 120

difference between the two approaches. Finally, it has been proved in [6] that the 121

coupling problem with variational conditions is equivalent to the problem using op- 122

timization on σ(a)(uad(0)−ua(0))2 +(φ1−φ2)
2; our observation is thus consistent. 123
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a > 0 a < 0
Variational Conditions O(ν3/2) O(ν)
Non Variational Conditions O(ν5/2) O(ν)

Table 3. Variational versus non-variational coupling conditions: theoretical error estimates for
‖u−uad‖Ω−

3.2 Coupling Through Boundary Layer Correction 124

A different approach, only adding a correction for the boundary layer (in the case 125

a < 0), was proposed in [4]. Here, the authors define the coupled solution of interest 126

to be the solution of the regularized problem (4), and they consider the variational 127

solution obtained from (5) as a first approximation of the regularized one. More pre- 128

cisely the coupled solution is represented as a perturbation of the variational solution 129

in the form 130

wε(x) = uad(x)+ rε(x),

vε(x) = ua(x)+ lε(x)+ sε(x),
131

where lε is a boundary layer function and rε and sε are the remainders of the asymp- 132

totic expansion. The boundary layer term can be computed analytically, but integrals 133

that are involved are then approximated numerically. The numerical solution does 134

not take into account the remainders rε and sε and thus, compared to the solution 135

obtained with (5), the pure advection solution in Ω+ is the only one to be corrected. 136

3.3 Coupling Conditions from Operator Factorization 137

A very accurate set of coupling conditions can be derived from an operator factor- 138

ization, see [7], and requires the solution of a modified advection equation: if we 139

introduce λ± = (a±√a2 + 4νc)/2ν , the advection diffusion equation can be fac- 140

tored, i.e. 141

Ladu = (∂x−λ+)(∂x−λ−)u = f , 142

which gives after integration on (x0,L2) 143

(∂x−λ−)u(x0) = (∂x−λ−)u(L2)e
−λ+L2 +

∫ L2

x0

f (σ)e−λ+σ dσ . 144

Introducing the new advection equation (∂x− λ+)ũa = f , we find that the viscous 145

solution satisfies 146

(∂x−λ−)u(x0) = ũa(x0)+ ((∂x−λ−)u(L2)− ũa(L2))e
−λ+L2 . (7)

Solving the advection-diffusion equation in Ω− with the boundary condition (7) (re- 147

placing u by uad on the left hand side) would thus yield the exact coupled solution, 148

i.e. u|Ω− = uad . However the term in L2 can not be used directly, and one chooses 149

instead ũa(L2) to be an expansion of (∂x−λ−)u(L2) for ν small, so that the proposed 150

coupling condition is 151
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(∂x−λ−)uad(x0) = ũa(x0). (8)

This leads to the coupling procedure 152

1. Solve the new advection equation (∂x −λ+)ũa = f on (x0,L2) with ũa(L2) = 153

z0 + z1ν + · · ·+O(νm). 154

2. Solve the advection-diffusion equation on (−L1,x0) with the transmission 155

condition (8). 156

3. Solve the advection equation (3) on (x0,L2) with the condition uad(x0) = ua(x0) 157

if a > 0. 158

For our model problem, rigorous error estimates obtained in [7] are shown in Table 4. 159

We see that this coupling strategy leads to a coupled solution which is much closer 160

to the fully viscous one than any of the other strategies. Even in the case of negative 161

advection, one can now obtain approximations more accurate than O(ν). Note how- 162

ever that λ± are simple constants only in the stationary one dimensional case. In the 163

case of evolution, or for higher dimensions, the λ± need to be approximated (see for 164

example [8]). 165

4 The χ-Formulation 166

A very different approach for coupling viscous and inviscid problems is proposed in 167

[3]: the method called χ-formulation decides automatically where the viscous model 168

and where the inviscid one needs to be used, and solves the equation 169

−νχ(u′′)+ au′+ cu = f on (−L1,L2),
u = g1 on x =−L1,

Bu = 0 on x = L2,
170

where the χ function is defined by 171

χ(s) =

⎧⎨
⎩

0 0≤ s < δ −σ ,

(s− δ +σ) δ
σ δ −σ ≤ s≤ δ ,

s s > δ ,
172

so that the diffusion term is neglected as soon as it is small enough. This leads how- 173

ever to a non-linear equation, even if the underlying models are linear, which requires 174

a Newton type algorithm. 175

In [3], the method is studied for the model problem at the continuous level, and 176

well posedness is proved. Several years later, in [1] and [11], this strategy is used 177

to solve the Navier-Stokes equations. Note that other cut-off functions can also be 178

considered. We show in Table 5 numerically computed error estimates for the χ- 179

formulation applied to our model problem. 180

a > 0 a < 0
Factorization of the operator O(e−a/ν) O(νm)

Table 4. Coupling based on factorization: theoretical error estimates for ‖u−uad‖Ω−
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a > 0 a < 0
χ-formulation O(ν5/2) O(ν)

Table 5. χ-formulation: numerically computed error estimate for ‖u−uad‖Ω−

5 Conclusions 181

For a positive velocity a, among all the strategies presented in this paper, the best 182

coupling condition is provided by the factorization of the operator in the non overlap- 183

ping case: the error between the corresponding coupled solution and the fully viscous 184

solution is exponentially small. Note that in the unstationary case or in higher dimen- 185

sions the exponential convergence will be replaced by a polynomial one, because of 186

approximations, an issue we currently investigate. Good algebraically small errors 187

of O(ν5/2) can also be obtained using the non variational conditions (6), or with the 188

χ-formulation. The other strategies yield less accurate error estimates. When a < 0, 189

the factorization method is the only one to provide a better estimate than O(ν). 190
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