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1 Introduction 8

For a bounded open subset Ω ⊂ R
2, suppose we want to solve 9

(η−Δ)u = f on Ω , u = g on ∂Ω , (1)

for η ≥ 0 using the optimized Schwarz method (OSM) 10

(η−Δ)uk
i = f |Ωi on Ωi, uk

i = g|∂Ωi
on ∂Ωi∩∂Ω ,

∂uk
i

∂ni
+ pi ju

k
i =

∂uk−1
j

∂ni
+ pi ju

k−1
j on Γi j for all Γi j �= /0,

(2)

for k = 1,2, . . . and i = 1, . . . ,n, where Ωi ⊂ Ω are non-overlapping subdomains, 11

Γi j = ∂Ωi ∩Ω j is the interface between Ωi and an adjacent subdomain Ω j, j �= i, 12

and pi j > 0 are Robin parameters along Γi j. In [7], the powerful technique of en- 13

ergy estimates is used to show convergence of (2) for η = 0 under very general 14

conditions. Similar techniques have been used to prove convergence results for other 15

types of equations, cf. [2] for the Helmholtz equation and [5] for the time-dependent 16

wave equation. While one often assumes that the proof carries over trivially to finite- 17

element discretizations, it has been reported in the literature (cf. [8, 9]) that discrete 18

OSMs can diverge when the domain decomposition contains cross points, i.e., when 19

more than two subdomains share a common point. This is in apparent contradiction 20

to Lions’ proof, and such difficulties contribute to the limited use of OSMs in prac- 21

tice. The goal of this paper is to explain why the presence of cross points makes 22

it possible for the discrete OSM to diverge despite the proof of convergence at the 23

continuous level, and why this difference in behavior is generally unavoidable. 24

The remainder of the paper proceeds as follows. In Sect. 2, we recall Lions’ en- 25

ergy estimate argument. In Sect. 3, we explain why it is impossible to convert the 26

continuous energy estimate into a discrete one in a generic way, without sacrificing 27

continuity of the solutions across subdomain boundaries. In Sect. 4, we show two 28

modifications that preserve continuity of the discrete solutions, but both must be used 29
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with Krylov methods to avoid divergent iterations. Finally, we show in Sect. 5 30

that a Lions-type discrete estimate can only hold under very stringent conditions; 31

thus, continuous estimates generally do not predict the behavior of discrete OSMs. 32

2 Continuous Energy Estimates 33

We briefly recall the argument in [7] proving the convergence of (2). We assume 34

pi j = p ji to be a positive function that is bounded away from zero and defined on 35

Γi j = Γji. To show that (2) converges for all initial guesses, we first write the error 36

equations 37

38(η−Δ)ek
i = 0 on Ωi, ek

i = 0 on ∂Ω ∩∂Ωi,

∂ek
i

∂ni
+ pi je

k
i =

∂ek−1
j

∂ni
+ pi je

k−1
j on Γi j for all Γi j �= /0,

(3)

where ei = uk
i −u|Ωi with u being the exact solution to (1). We then multiply the first 39

equation in (3) by ek
i and integrate to get 40

41

0 = ai(e
k
i ,e

k
i )−

∫
∂Ωi

ek
i

∂ek
i

∂ni
= ai(e

k
i ,e

k
i )− ∑

(i, j)∈E

∫
Γi j

ek
i

∂ek
i

∂ni
, 42

where the last sum is over all pairs of subdomains (i, j) that share an interface, and 43

ai(ui,vi) =
∫

Ωi
(∇u ·∇v+ηuv)dx is the energy bilinear form defined on subdomain 44

Ωi, so that ai(ek
i ,e

k
i ) =

∫
Ωi

η |ek
i |2 + |∇ek

i |2 dx≥ 0 is the energy of the error on subdo- 45

main Ωi. We now rewrite the product term as 46

47

ek
i

∂ek
i

∂ni
=

1
4pi j

[(∂ek
i

∂ni
+ pi je

k
i

)2−
(
−∂ek

i

∂ni
+ pi je

k
i

)2
]
=:

(
T k
+i j

)2− (
T k
−i j

)2
, 48

49

where T k±i j =
1√
4pi j

(± ∂ek
i

∂ni
+ pi jek

i ). Since
∂ek

j
∂ni

=− ∂ek
j

∂n j
on Γi j, the interface condition 50

in (3) can be written as T k
+i j = T k−1

− ji , which means 51

ai(e
k
i ,e

k
i ) = ∑

(i, j)∈E

∫
Γi j

[(
T k
+i j

)2− (
T k
−i j

)2
]

ds = ∑
(i, j)∈E

∫
Γi j

[(
T k−1
− ji

)2− (
T k
−i j

)2
]

ds. 52

Thus, 53

54ai(e
k
i ,e

k
i )+ ∑

(i, j)∈E

∫
Γi j

(
T k
−i j

)2
ds = ∑

(i, j)∈E

∫
Γi j

(
T k−1
− ji

)2
ds. (4)

If we sum (4) through all subdomains i, we get 55

N

∑
i=1

ai(e
k
i ,e

k
i )+

N

∑
i=1

∑
(i, j)∈E

∫
Γi j

(
T k
−i j

)2
ds =

N

∑
i=1

∑
(i, j)∈E

∫
Γi j

(
T k−1
− ji

)2
ds. (5)

We can now sum (5) over k and simplify to get 56

K

∑
k=0

N

∑
i=1

ai(e
k
i ,e

k
i )+BK = B0, (6)
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where Bk := ∑N
i=1 ∑(i, j)∈E

∫
Γi j

(
T k
−i j

)2
ds ≥ 0. Since BK ≥ 0 and each ai(ek

i ,e
k
i ) ≥ 0, 57

we see that ∑K
k=0 ai(ek

i ,e
k
i ) ≤ B0 for all i and all K; hence ai(ek

i ,e
k
i )→ 0 as k→ ∞ 58

for all i. This implies that ‖ek
i ‖H1(Ωi)

→ 0 when η > 0, so ui→ u|Ωi in the H1 norm. 59

A similar argument holds for η = 0. Note that the possible presence of cross points 60

does not cause any difficulty in the proof, since they form a subset of measure zero 61

in ∂Ωi and thus do not contribute to the boundary terms when integrating by parts. 62

3 Finite Element Discretization 63

We now try to mimic Lions’ proof in the finite element case. The finite element 64

method uses the weak form of (2), i.e., we must multiply the PDE by a test function 65

φ and integrate by parts. The problem becomes 66

67

Find ui ∈V h ⊂ H1(Ωi) s.t. for all φ ∈W h ⊂ H1
0 (Ω)∩H1(Ωi), 68

69∫
Ωi

(∇φ ·∇uk
i +ηφuk

i )−
∫

∂Ωi

φ
∂uk

i

∂ni
=

∫
Ωi

φ f . (7)

We now suppose that φ is a basis function corresponding to a degree of freedom 70

along Γi j, whose support does not contain any cross points, see Fig. 1a To obtain an 71

expression for
∫

∂Ωi
φ ∂uk

i
∂ni

, we multiply the interface condition by φ and integrate to 72

get 73

74

∫
Γi j

φ(
∂uk

i

∂ni
+ puk

i ) =

∫
Γi j

φ(
∂uk−1

j

∂ni
+ puk−1

j ). (8)

Substituting into (7) gives 75

ai(φ ,uk
i )+

∫
Γi j

φ puk
i −

∫
Γi j

φ
∂uk−1

j

∂ni
=

∫
Ωi

φ f +
∫

Γi j

φ puk−1
j . (9)

76Thus, we are faced with the same problem of finding an expression for
∫

Γi j
φ

∂uk−1
j

∂ni
. 77

Fortunately, we can use the weak form of the PDE from Ω j 78

a j(φ ,uk−1
j )−

∫
∂Ω j

φ
∂uk−1

j

∂n j
=

∫
Ω j

φ f . (10)

Since ni =−n j on Γi j, adding (9) and (10) and rearranging gives 79

ai(φ ,uk
i )+

∫
Γi j

φ puk
i =

∫
Ωi

φ f −a j(φ ,uk−1
j )+

∫
Γi j

φ puk−1
j , (11)

which is just the usual block-Jacobi splitting of the stiffness matrix along Γi j. 80
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(a) (b)

Fig. 1. Finite element discretization (a) without cross points and (b) with a cross point
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Now assume that the support of φ contains cross points, see Fig. 1b. Here Ωi is 81

adjacent to two distinct subdomains Ω j and Ωl , j �= l, and φ is non-zero on all three 82

subdomains. Since the two parts of the interface, Γi j and Γil , must satisfy different 83

interface conditions, we must separate
∫

∂Ωi
φ ∂uk

i
∂n into contributions along Γi j and Γil , 84

ai(φ ,uk
i )−

∫
Γi j

φ
∂uk

i

∂ni
−

∫
Γil

φ
∂uk

i

∂ni
=

∫
Ωi

φ f . 85

The boundary term along Γi j can be replaced by the interface condition 86

87∫
Γi j

φ(
∂uk

i

∂ni
+ puk

i ) =

∫
Γi j

φ(
∂uk−1

j

∂ni
+ puk−1

j ), 88

but now if we try to use the PDE on Ω j to eliminate the term
∫

Γi j
φ

∂uk−1
j

∂ni
, we would 89

get 90∫
Γi j

φ
∂uk−1

j

∂n j
= a j(φ ,uk−1

j )−
∫

Γj j′
φ

∂uk−1
j

∂n j
−

∫
Ω j

φ f , 91

so we get a new term representing the trace along Γj j′ , where Ω j′ is another subdo- 92

main adjacent to j (see Fig. 1b). The same problem occurs when we try to eliminate 93

the trace along Γil . Note that, in the discrete FEM setting, the Robin traces are in- 94

tegrated along a subset of ∂Ωi of non-zero measure straddling both interfaces Γi j 95

and Γil , and piecewise interface quantities are not available. Thus, the traces cannot 96

be transmitted separately along Γi j and Γil , unlike in the continuous case; one must 97

introduce extra unknowns to represent the piecewise Robin traces (integrated against 98

a test function) for each subdomain at the cross point. 99

One way of circumventing the problem is to use mortar methods [1, 6], which 100

are designed for non-conforming grids. In these methods, the interface conditions 101

are imposed using mortar functions, which have one degree of freedom less at the 102

ends of intervals. Thus, there is no equation at the cross point, and the problem of 103

unavailable Robin traces goes away. However, since the interface conditions are only 104

enforced weakly, the method does not generally converge to the exact solution of the 105

global FEM problem, but rather to a discontinuous solution (Fig. 2) that is O(hp)- 106

accurate, where p is the order of the finite element method. 107
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Fig. 2. (a) The solution of −Δu = f with four subdomains on Ω = [−1,1]2, with right-hand
side f (x,y) = sin(xy). The interface conditions are imposed using a mortar space. (b) Discon-
tinuity of the composite solution near the origin
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4 Two Lagrange Multiplier and Primal-Dual Methods 108

If we want to formulate subdomain problems that are equivalent to the discrete global 109

FEM problem, we need to introduce extra variables to represent the total Robin 110

traces. Thus, at the cross point, we impose for each Ωi 111

ai(φ ,uk
i )+

∫
∂Ωi

pφ ·uk
i +λ k

i =

∫
Ωi

φ f , (12)

where λ k
i are Lagrange multipliers for ensuring consistency with the global problem. 112

A cross point touching r subdomains requires r such Lagrange multipliers, so we also 113

need r constraints to be satisfied at convergence: 114

• Continuity constraints (r− 1 equations): at the cross point, we must have u1 = 115

u2 = · · ·= ur. 116

• PDE constraint (1 equation): if we sum (12) over the r subdomains and then 117

subtract the global PDE ∑r
i=1 ai(φ ,ui) =

∫
Ω φ f from the result, we get 118

N

∑
i=1

∫
∂Ωi

pφui +
N

∑
i=1

λi = 0. 119

This gives two types of algorithms: 120

1. Primal-Dual methods: the continuity constraints are enforced for every iteration. 121

Thus, it suffices to introduce one extra variable (typically a coarse-grid basis 122

function that has the value one at the cross point), and the PDE constraint is 123

used as part of the coarse problem. This approach is similar to FETI-DP [3], 124

except it is usually formulated with Neumann rather than Robin traces. 125

2. Two-Lagrange Multiplier methods: the λ k
i are retained, but the uk

i are eliminated 126

using the PDE in the interior of the subdomains. This leads to a substructured 127

problem formulated on the interface, which is then solved using a preconditioned 128

Krylov method such as GMRES. This is known as the Two-Lagrange Multiplier 129

(2LM) method and has been studied in detail in [8]. 130
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Fig. 3. Eigenvalues of the 2LM-preconditioned system for Poisson’s equation (η = 0), using
a 4×4 decomposition of the unit square with mesh size h = 1/64 and Robin parameter p =
C/
√

h for all interface nodes
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Note that neither formulation is an exact discretization of (2) at cross points; thus, 131

Lions’ convergence analysis does not apply there. In fact, one can show [4] that the 132

eigenvalues of the iteration matrix of the 2LM method may lie outside the unit disc 133

when cross points are present, as seen in the 4×4 example shown in Fig. 3. In such 134

cases, the method diverges. However, convergence can be restored if one uses Robin 135

parameters with a different scaling at the cross points [4]. 136

5 Conditions for Existence of Discrete Energy Estimates 137

To see what conditions are needed for Lions’ estimates to hold in the discrete case, 138

let us consider solving −Δu = f on Ω = [−1,1]2 using P1 finite elements on a 139

structured triangular mesh. This yields the system Au = f , where A is identical to the 140

matrix obtained from finite differences. If we now divide Ω into four subdomains 141

corresponding to the four quadrants of the plane, then an optimized Schwarz method 142

must solve 143
(Ai +Li)uk

i = gk
i on each Ωi. 144

Here, Ai is the partially assembled stiffness matrix for Ωi, Li corresponds to trans- 145

mission conditions, and gk
i is a function of f and uk−1

j for j �= i. To define the discrete 146

error function, let us write u∗i = u∗|Ωi , where u∗ is the exact solution to Au = f . Then 147

the error on Ωi is ek
i = uk

i −u∗i , with discrete energy ai(ek
i ,e

k
i ) = (ek

i )
T Aiek

i > 0 when- 148

ever ek
i �= 0, since each subdomain touches a Dirichlet boundary. Now observe that 149

Aie
k
i = Aiu

k
i −Aiu

∗
i = Aiu

k
i − fi at interior nodes. 150

Since the stencils of Ai and A coincide at interior nodes, we see that Aiek
i must be 151

zero away from the interfaces. Thus, we in fact have 152

ai(e
k
i ,e

k
i ) = ∑

v∈∂Ωi\∂Ω
ek

i (v) · (Aie
k
i )(v) = ∑

v∈∂Ωi\∂Ω
[(T k

+i(v))
2− (T k

−i(v))
2], 153

where T k
±i(v) are the “Robin traces” at an interface point v: 154

155
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T k
+i(v) =

1√
4p

[
(Aie

k
i )(v)+ pek

i (v)
]
, T k

−i(v) =
1√
4p

[−(Aie
k
i )(v)+ pek

i (v)
]
. 156

157Hence, if we let T k
+i(v) = T k−1

− j (v) at every point v on the interface, then the energy 158

estimate holds exactly the same way as in the continuous case, and we have conver- 159

gence of the method. This allows us to deduce the correct interface conditions for v 160

away from the cross point. Using the definition ek
i = uk

i −u∗i , we have 161

(Ai(u
k
i −u∗i ))(v)+ p(uk

i (v)−u∗i (v)) =−(A j(u
k−1
j −u∗j))(v)+ p(uk−1

j (v)−u∗j(v)).
(13)

But since 162

(Aiu
∗
i )(v)+ (A ju

∗
j)(v) = f (v), (14)

we can simplify (13) to get 163

(Aiu
k
i )(v)+ puk

i (v) = f (v)− (A ju
k−1
j )(v)+ puk−1

j (v). 164

In other words, we need 165

(Liu
k
i )(v) = puk

i (v), gk
i (v) = f (v)− (A ju

k−1
j )(v)+ puk−1

j (v). 166

On the other hand, if v is a cross point, then (14) is no longer valid, since f (v) is the 167

sum of many subdomain contributions. Thus, it is in general impossible to find Li 168

and gk
i such that the relation T k

+i(v) = T k−1
− j (v) holds at the cross point for some j. In 169

our model problem, however, the stencil at the cross point has a special form for the 170

first and third quadrant: 171

(A1u∗1)(0,0) = u∗(0,0)− 1
2 u∗(0,h)− 1

2 u∗(h,0),

(A3u∗3)(0,0) = u∗(0,0)− 1
2 u∗(0,−h)− 1

2 u∗(−h,0).

Thus, we actually have (A1u∗1)(0,0)+ (A3u∗3)(0,0) =
1
2 f (0,0), a known quantity! A 172

similar relation holds between Ω2 and Ω4, so it is actually possible to find transmis- 173

sion conditions at the cross point that satisfy the discrete energy estimate. For Ω1, 174

this reads 175

176(A1uk
1)(v)+ puk

1(v) =
1
2 f (v)− (A3uk−1

3 )(v)+ puk−1
3 (v). 177

Figure 4 shows the convergence of the method for p = π
2
√

h
, which gives the optimal 178

contraction factor ρ = 1−O(
√

h), just as in the two-subdomain case. Since the dis- 179

crete energy estimate holds, the converged subdomain solutions always coincide with 180

the exact discrete solution u∗, unlike in the mortar case. In general, discrete energy 181

estimates can only be derived if for every cross point v, its set of neighbors can be 182

partitioned into disjoint pairs (i, j) such that (Aiu∗i )(v)+ (A ju∗j)(v) = fi j(v) can be 183

calculated without knowing u∗. For cross points with wide stencils or an odd number 184

of neighbors, this is not possible. In such cases, the methods in Sect. 4 are still excel- 185

lent choices in practice, but one cannot use Lions’ estimates to deduce convergence 186

for arbitrary positive Robin parameters p. 187
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Fig. 4. (a) Convergence for different grid spacing h; (b) Contraction rate versus h
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