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Summary. In this paper, we establish the existence of a stable decomposition in the Sobolev 9

space H1
0 for domain decompositions which are not shape regular in the usual sense. In partic- 10

ular, we consider domain decompositions where the largest subdomain is significantly larger 11

than the smallest subdomain. We provide an explicit upper bound for the stable decomposition 12

that is independent of the ratio between the diameter of the largest and the smallest subdomain. 13

1 Introduction 14

One of the great success stories in domain decomposition methods is the invention 15

and analysis of the additive Schwarz method by Dryja and Widlund in [2]. Even 16

before the series of international conferences on domain decomposition methods 17

started, Dryja and Widlund presented a variant of the historical alternating Schwarz 18

method invented by Schwarz in [5] to prove the Dirichlet principle on general 19

domains. This variant, called the additive Schwarz method, has the advantage of 20

being symmetric for symmetric problems, and it also contains a coarse space compo- 21

nent. In a fully discrete analysis in [2], Dryja and Widlund proved, based on a stable 22

decomposition result for shape regular decompositions, that the condition number of 23

the preconditioned operator with a decomposition into many subdomains only grows 24

linearly as a function of H
δ , where H is the subdomain diameter, and δ is the over- 25

lap between subdomains. This analysis inspired a generation of numerical analysts, 26

who used these techniques in order to analyze many other domain decomposition 27

methods, see the reference books [4, 6, 7], or the monographs [1, 8], and references 28

therein. 29

The key assumption that the decomposition is shape regular is, however, often 30

not satisfied in practice: because of load balancing, highly refined subdomains are 31

often physically much smaller than subdomains containing less refined elements, 32

and it is therefore of interest to consider domain decompositions that are only 33

locally shape regular, i.e., domain decompositions where the largest subdomain can 34

be considerably larger than the smallest subdomain, and therefore the subdomain 35
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diameter and overlap parameters depend strongly on the subdomain index. In such 36

a domain decomposition, the generic ratio H
δ from the classical convergence result 37

of the additive Schwarz method can be given at least two different meanings: let Hi 38

refer to the diameter of subdomain number i and δi refer to the width of the over- 39

lap around subdomain number i. Then in the classical convergence result from [2], 40

one could replace the generic ratio H
δ by maxi(Hi)

mini(δi)
, but this is likely to lead to a very 41

pessimistic estimate for the condition number growth. The general analysis of the 42

additive Schwarz method based on a shape regular decomposition does unfortunately 43

not permit to answer the question if the condition number growth for a locally shape 44

regular decomposition is in fact only linear in the quantity maxi(
Hi
δi
), which is much 45

smaller than maxi(Hi)
mini(δi)

in the case of subdomains and overlaps of widely different sizes, 46

a case of great interest in applications. 47

In [3], we established the existence of a stable decomposition in the continuous 48

setting with an explicit upper bound and a quantitative definition of shape regular- 49

ity in two spatial dimensions. The explicit upper bound is also linear in the generic 50

quantity H
δ , and the result is limited to shape regular domain decompositions where 51

all subdomains have similar size and where the overlap width is uniform over all 52

subdomains. Having explicit upper bounds, however, allows us now, using simi- 53

lar techniques, to establish the existence of a stable decomposition in the continu- 54

ous setting with explicit upper bounds when maxi(Hi)� mini(Hi), and we provide 55

an explicit upper bound which is linear in maxi(Hi/δi) for problems in two spatial 56

dimensions. To get this result, only a few of the inequalities established in [3] need to 57

be reworked, and it would be very difficult to obtain such a result without the explicit 58

upper bounds from the continuous analysis in [3]. 59

We state first in Sect. 2 our main theorem along with the assumptions we make on 60

the domain decomposition. We then prove the main theorem in Sect. 3 in two steps: 61

first, we show in Lemma 1 how to construct the fine component in Sect. 3.1, which 62

is an extension of the result [3, Theorem 4.6] for the case where subdomain sizes 63

Hi and overlaps δi can strongly depend on the subdomain index i. The major contri- 64

bution is however in the second step, presented in Lemma 2 in Sect. 3.2, where we 65

show how to construct the coarse component in the case of strongly varying Hi and δi 66

between subdomains. This result is a substantial generalization of [3, Lemma 5.7]. 67

Using these two new results, and the remaining estimates from [3] which are still 68

valid, we can prove our main theorem. We finally summarize our results in the con- 69

clusions in Sect. 4. 70

2 Geometric Parameters and Main Theorem 71

In the remainder of this paper, we always consider a domain decomposition that has 72

the following properties: 73

• Ω is a bounded domain of R2. 74



Page 511

UN
CO

RR
EC

TE
D

PR
O
O
F

Non Shape Regular Domain Decomposition

• The (Ui)1≤i≤N are a non-overlapping domain decomposition of Ω , i.e., satisfy 75⋃N
i=1 Ui = Ω and Ui ∩Uj = /0 when i �= j . The Ui are bounded connected open 76

sets of R2 and for all subdomains Ui the measure of Ui \Ui is zero. 77

• We set Hi := diam(Ui). 78

• Two distinct subdomains Ui and Uj are said to be neighbors if Ui∩U j �= /0. 79

• For each subdomain Ui, let δi > 0 be such that 2δi ≤min j,Ui∩U j= /0(dist(Ui,Uj)). 80

We set Ωi := {xxx ∈ Ω , dist(xxx,Ui) < δi}. The Ωi form an overlapping domain 81

decomposition of Ω . When subdomains Ui and Uj are neighbors, then the over- 82

lap between Ωi and Ω j is δi + δ j wide. The intersection Ωi∩Ω j is empty if and 83

only if the distance between Ui and Uj is positive. 84

• We set δ s
i = min j �=i,Ui∩U j �= /0 δ j and δ l

i = max j �=i,Ui∩U j �= /0 δ j. 85

• The domain decomposition has Nc colors: there exists a partition of N∩ [1,N] 86

into Nc sets Ik such that Ωi∩Ω j is empty whenever i �= j and i and j belong to 87

the same color Ik. 88

• T is a coarse triangular mesh of Ω : one node xxxi per subdomain Ωi (not counting 89

the nodes located on ∂Ω ). By P1(T ), we denote the standard finite element 90

space of continuous functions that are piecewise linear over each triangular cell 91

of T . 92

• Let θmin be the minimum of all angles of mesh T . 93

• No node (including the nodes located on ∂Ω ) of the coarse mesh has more than 94

K neighbors. 95

• Let di be the length of the largest edge originating from node xxxi in the mesh T . 96

• Let Hh,i be the length of the shortest height through xxxi of any triangle in the 97

coarse mesh T that connects to xxxi. We also set H ′h,i as the minimum of Hh, j over 98

i and its direct neighbors in mesh T . 99

• We suppose that for each subdomain Ui, there exists ri > 0 such that Ui is star- 100

shaped with respect to any point in the ball B(xxxi,ri). We also suppose ri ≤ Hh,i
4K+1 101

and ri ≤ H ′h,i/2. 102

• We also assume the existence of both a pseudo normal XXXi and of a pseudo cur- 103

vature radius R̃i for the domain Ui, i.e., we suppose that for each Ui there exists 104

an open layer Li containing ∂Ui, a vector field XXXi continuous on Li∩Ui, C ∞ on 105

Li ∩Ui such that DXXXi(xxx)(XXXi(xxx)) = 0, ‖XXXi(xxx)‖ = 1, and ε0 > 0 such that for all 106

positive ε < ε0 and for all x̂xx in ∂Ui, x̂xx+εXXXi(x̂xx)∈Ui and x̂xx−εXXXi(x̂xx) /∈Ui. We set, 107

for all positive δ ′, Uδ ′
i = {xxx∈Ui, dist(xxx,∂Ui)< δ ′}, and V δ ′

i = {x̂xx+ sXXXi(x̂xx), x̂xx ∈ 108

∂Ui,0 < s < δ ′}. We assume there exist R̂i > 0, θXXX , 0 < θXXX ≤ π/2, and δ0i, 109

0 < δ0i ≤ R̂i sinθXXX such that V R̂
i ⊂ Li ∩Ui and Uδ ′

i ⊂ V δ ′/ sinθXXX for all positive 110

δ ′ ≤ δ0i. Set R̃i := 1/‖divXXXi‖∞. We suppose δ0i > δ l
i . 111

We finally define, for all i, the linear form on H1
0 (Ω) by 112

�i(u) :=
1

πr2
i

∫
B(xxxi,ri)

u(xxx)dxxx =
1
π

∫
B(000,1)

u(xxxi + riyyy)dyyy.

We can now state our main theorem, namely the existence of a stable decomposi- 113

tion of H1
0 (Ω) whose upper bound is independent of maxi(Hi)

mini(Hi)
. This theorem there- 114

fore leads to a substantially sharper condition number estimate in the important case 115
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of an only locally shape regular decomposition, and is a major improvement of [3, 116

Theorem 5.12], which only considered shape regular decompositions, albeit at the 117

continuous level, in contrast to [2]. 118

Theorem 1. For u in H1
0 (Ω), there exists a stable decomposition (ui)0≤i≤N of u, i.e., 119

u = ∑N
i=0 ui, u0 in P1(T )∩H1

0 (Ω) and ui ∈ H1
0 (Ωi) such that 120

N

∑
i=0
‖∇ui‖2

L2(Ωi)
≤C‖∇u‖2

L2(Ω),

where C = 2C1 + 2(1+C1)C2 and 121

C1 =
1

tanθmin

(
1+ 2maxi(

ri
Hh,i

)
)
K( 25

6π maxi(
di
ri
)+ 2π

)
1− ((2K + 1)+ (4K+ 1)maxi(

ri
Hh,i

)
)

maxi(
ri

Hh,i
)
,

C2 = 2+ 8λ 2
2 (Nc−1)2(1+max

i

R̂i

R̃i
)max

i

δ l
i

δ s
i

max
i

R̂i

δ s
i sinθXXX

+
8
3

λ 2
2 (Nc−1)2(1+max

i

R̂i

R̃i
)max

i

δ l
i

δ s
i

max
i

r2
i

δ s
i R̂i sinθXXX

×

×max
i

⎛
⎜⎝
⎛
⎝
(

H2
i

r2
i

+
1
2

) 1
4

+
Hi

4
√

2ri

⎞
⎠

4

− 1
2
− H2

i

r2
i

− H4
i

2r4
i

⎞
⎟⎠ ,

with λ2 a universal constant depending only on the dimension, and being smaller 122

than 6 in the two dimensional case we consider here. 123

Note that the condition ri ≤ Hh,i
4K+1 implies that the denominator of C1 is positive. The 124

value of C2 is also always positive. 125

3 Proof of Theorem 1 126

The proof is based on the continuous analysis in [3], but two results must be 127

adapted to the situation of only locally shape regular decompositions: we first show 128

in Sect. 3.1 how to construct the fine component, which is a technical extension of 129

the result [3, Theorem 4.6] for the case where subdomain sizes Hi and overlaps δi can 130

strongly depend on the subdomain index i. Second, we explain in Sect. 3.2 the con- 131

struction of the coarse component in the case of strongly varying Hi and δi between 132

subdomains, which is a non-trivial generalization of [3, Lemma 5.7]. With these two 133

new results, and the remaining estimates from [3], the proof can be completed. 134

3.1 Constructing the Fine Component 135

We begin by establishing a stable decomposition when there is no coarse mesh. 136
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Lemma 1. Let u be in H1
0 (Ω). Then, there exist (ui)1≤i≤N, ui in H1

0 (Ωi) such that 137

u = ∑N
i=1 ui, and 138

N

∑
i=1
‖∇ui‖2

L2(Ω) ≤ 2‖∇u‖2
L2(Ω) + 8λ 2

2 (Nc−1)2

(
N

∑
i=1

(1+
R̂i

R̃i
)

δ l
i

δ s
i

R̂i

δ s
i sinθXXX

‖∇u‖2
L2(Ui)

)

+ 8λ 2
2 (Nc−1)2

(
N

∑
i=1

(1+
R̂i

R̃i
)

δ l
i

δ s
i

1

δ s
i R̂i sinθXXX

‖u‖2
L2(Ui)

)
,

(1)

where λ2 is the universal constant of Theorem 1. We further have, for all η > 0, 139

N

∑
i=1

‖∇ui‖2
L2(Ω) ≤ 2‖∇u‖2

L2(Ω) + 8λ 2
2 (Nc−1)2

N

∑
i=1

(1+
R̂i

R̃i
)

δ l
i

δ s
i

R̂i

δ s
i sinθXXX

‖∇u‖2
L2(Ui)

+
8(1+η)

3
λ 2

2 (Nc−1)2
N

∑
i=1

(1+
R̂i

R̃i
)

δ l
i

δ s
i

r2
i

δ s
i R̂i sinθXXX

×

×

⎛
⎜⎝
⎛
⎝
(

H2
i

r2
i

+
1
2

) 1
4

+
Hi

4
√

2ri

⎞
⎠

4

− 1
2
− H2

i

r2
i

− H4
i

2r4
i

⎞
⎟⎠‖∇u‖2

L2(Ui)

+ 8(1+
1
η
)πλ 2

2 (Nc−1)2
N

∑
i=1

(1+
R̂i

R̃i
)

δ l
i

δ s
i

H2
i

δ s
i R̂i sinθXXX

|�i(u)|2.
(2)

Proof. We follow the proof of [3, Theorem 4.6]. Let ρ be a C ∞ non-negative func- 140

tion whose support is included in the closed unit ball of R
2 and whose L1 norm 141

is 1. Let ρε(xxx) = ρ(xxx/ε)/ε2 for all ε > 0. Let hi be the characteristic function of 142

the set {xxx ∈ R
2,dist(xxx,Ui) < δi/2}. Let φi = ρδi/2 ∗ hi. The function φi is equal 143

to 1 inside Ui, vanishes outside of {xxx ∈ R
2,dist(xxx,Ui) < δi}, and ‖∇φi‖L∞(R2) ≤ 144

2‖∇ρ‖L1(R2;(R2,‖·‖2))
/δi. Here, ‖∇ρ‖L1(R2;(R2,‖·‖2))

means
∫
R2

√
∑2

i=1|∂iρ |2dxxx. 145

For i in N∩ [1,N], let ψi = φi ∏i−1
k=1(1−φk). We have 0≤ψi≤ 1, ψi zero in Ω \Ωi 146

and ∑i ψi = 1 in Ω . Set ui = ψiu. The function ui is in H1
0 (Ωi) and u = ∑i ui. Follow- 147

ing the proof of [3, Lemma 4.3], we get ∑N
i=1‖∇ψi(xxx)‖2

2 ≤ 2(NC−1)∑N
i=1‖∇φi(xxx)‖2

2. 148

Therefore, for all xxx in Ω , 149

N

∑
i=1

‖∇ψi(xxx)‖2
2 ≤ 8(Nc−1)‖∇ρ‖2

L1(R2;(R2,‖·‖2))

N

∑
i=1

1Ωi\Ui
(xxx)

δ 2
i

,

where1O is the indicator function for the set O . Since ∑i‖∇ui‖2
L2(Ω)

≤ 2‖∇u‖2
L2(Ω)

+ 150

2
∫

Ω |u(xxx)|2 ∑i|∇ψi(xxx)|2dxxx, we get 151

N

∑
i=1
‖∇ui‖2

L2(Ω) ≤ 2‖∇u‖2
L2(Ω) + 4λ 2

2 (Nc−1)2
N

∑
i=1

∫
Ui

1{dist(xxx,∂Ui)<δ l
i }
|u(xxx)|2
(δ s

i )
2 dxxx,
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with λ2 := 2‖∇ρ‖L1(R2;(R2,‖·‖2))
. Using the W 1,1(R2) function ρ(xxx) = 1−‖xxx‖2, we

obtain the estimate λ2 = 6. To get (1), we apply Lemma 4.5 in [3] to each Ui, and to
obtain (2), we apply Lemma 5.10 from the same reference. �


To obtain a stable decomposition with a coarse component, we want to construct 152

u0 in P1(T ) such that for all i, �i(u0) = �i(u). 153

3.2 Constructing the Coarse Component 154

To construct u0, we follow the ideas of [3, Sect. 5.2]. First, we define a special norm. 155

156

Definition 1. Let T be the coarse mesh of the domain Ω . Let B′ be the set of indices 157

of the nodes of T located on the boundary4 ∂Ω . Let B be the set of the indices of 158

the nodes that are neighbors to the nodes with index in B′. Let V be the set of pairs 159

of indices of neighboring nodes in T which are not on ∂Ω . We define 160

‖·‖V ,B : RN →R
+,

yyy �→
√

∑
(i, j)∈V

|yi− y j|2 + ∑
i∈B

|yi|2.

When u is in P1(T )∩H1
0 (Ω), set ‖u‖V ,B := ‖(u(xxxi))1≤i≤N‖V ,B , where the xxxi are 161

the interior nodes of the mesh T . 162

Lemma 2. For u in H1
0 (Ω), there exists u0 in P1(T )∩H1

0 (Ω) such that, for all i in 163

{1, . . . ,N}, �i(u0) = �i(u) and 164

‖∇u0‖2
L2(Ω) ≤

1
tanθmin

(
1+ 2maxi(

ri
Hh,i

)
)
K
(

25
6π maxi(

di
ri
)+ 2π

)
1− ((2K + 1)+ (4K+ 1)maxi(

ri
Hh,i

)
)

maxi(
ri

Hh,i
)
.

Proof. The results of [3, Lemmas 5.6 and 5.8] stand without modifications. There- 165

fore u0 exists, and we have 166

‖∇u0‖2
L2(Ω) ≤

1
tanθmin

1+ 2maxi(
ri

Hh,i
)

1− ((2K + 1)+ (4K+ 1)maxi(
ri

Hh,i
)
)

maxi(
ri

Hh,i
)
‖u‖2

V ,B.

Note that the condition ri ≤ Hh,i
4K+1 implies the second denominator in the above equa- 167

tion positive. 168

It remains to compare ‖u‖2
V ,B and ‖∇u‖2

L2(Ω)
. We need to adapt the proof of [3, 169

Lemma 5.7]. We can suppose without any loss of generality that u is in C ∞(Ω). 170

Let i, j in {1, . . . ,N} be indices of neighboring nodes of T . Let dddi j = xxxi− xxx j, and 171

di j = ‖dddi j‖. We have for all (i, j) ∈ V 172

4 Because of the homogenous Dirichlet condition on the boundary ∂Ω , the nodes whose
indices are in B′ are not associated to a degree of freedom, therefore B′ and {1, . . . ,N}
have empty intersection.
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|�i(u)− � j(u)|2 = 1
π2

(∫
B(000,1)

(u(xxxi + riyyy)−u(xxx j + r jyyy))dyyy

)2

≤ 1
π

∫
B(000,1)

∫ 1

0
‖∇u

(
t(xxxi + riyyy)+ (1− t)(xxxj + r jyyy)

)‖2
2‖xxxi− xxx jjj +(ri− r j)yyy‖2

2dtdyyy

≤ (di j + |ri− r j|)2

π

∫
B(000,1)

∫ 1

0
‖∇u

(
t(xxxi + riyyy)+ (1− t)(xxxj + r jyyy)

)‖2
2dtdyyy

≤ (di j + |ri− r j|)2

π

∫
Ti, j

‖∇u(yyy′)‖2
2

∫ 1

0

1{‖yyy′−txxxi−(1−t)xxx j‖≤tri+(1−t)r j}
(tri +(1− t)r j)2 dtdyyy′,

where the tube Ti, j is the convex hull of B(xxxi,ri)∪B(xxx j,r j). We get 173

max
yyy′∈R2

∫ 1

0

1{‖yyy′−txxxi−(1−t)xxx j‖≤tri+(1−t)r j}
(tri +(1− t)r j)2 dt

= max
(s,s′)∈R2

∫ 1

0

1{
√
(s−tdi j)2+s′2≤tri+(1−t)r j}
(tri +(1− t)r j)2 dt

= max
s∈[−r j ,di j+ri]

∫ 1

0

1{|s−tdi j |≤tri+(1−t)r j}
(tri +(1− t)r j)2 dt

≤ max
s∈[−r j ,di j+ri]

∫ s+r j
di j−(ri−r j )

s−r j
di j+(ri−r j )

1
(tri +(1− t)r j)2 dt

= max
s∈[−r j ,di j+ri]

− 1
ri− r j

[
1

(tri +(1− t)r j)

] s+r j
di j−(ri−r j )

s−r j
di j+(ri−r j )

= max
s∈[−r j ,di j+ri]

(
2

di jr j + s(ri− r j)

)

=
2

min(ri,r j)(di j−|ri− r j|) .

Since di j ≥ Hh,i ≥ 4max(ri,r j), we have 174

|�i(u)− � j(u)|2 ≤ 25di j

6π min(ri,r j)
‖∇u‖2

L2(Ti j)
. (3)

If i is in the boundary set of the coarse mesh, then the node xxxi is neighbor to a 175

node xxxi′ located on ∂Ω . Note that i′ lies outside of the range {1, . . . ,N}. Using [3, 176

Eqs. (5.7) and (5.9)], we get 177

∑
i∈B

|�i(u)|2 ≤
(

∑
i∈B

4‖xxxi− xxxi′ ‖
πri

∫
T ′i
‖∇u(xxx)‖2dxxx

)
+ 2Kπ‖∇u‖2

L2(Ω), (4)

where T ′i is the convex hull of B(xxxi,ri)∪B(xxxi′ ,ri). We sum inequality (3) over all
i, j in the neighbor set and combine the resulting inequality with Eq. (4). Since
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max(ri,r j)≤H ′h,i/2≤min(Hh,i,Hh, j))/2, no point can belong to more than K tubes

Ti, j or T ′i . Therefore, ‖u‖2
V ,B ≤ K

(
25maxi(di/ri)/(6π)+ 2π

)‖∇u‖2
L2(Ω)

. This con-
cludes the proof. �
AQ1
To prove Theorem 1, we use Lemma 2 to construct the coarse component u0. We then 178

apply Lemma 1 to u−u0 to get the fine components ui. The terms in �i(u) vanish. 179

4 Conclusion 180

We have proved the existence of a stable decomposition of the Sobolev space H1
0 (Ω) 181

in the presence of a coarse mesh when the domain decomposition is only guaran- 182

teed to be locally shape regular. We provided an explicit upper bound for the stable 183

decomposition that depends neither on maxi(Hi)/mini(Hi), nor on the number of 184

subdomains. This would not have been possible without the explicit upper bounds 185

provided in [3]. This shows that deriving such explicit upper bounds can be important 186

for problems arising naturally in applications, e.g., load balanced domain decompo- 187

sitions with local refinement. 188
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