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1 Introduction 12

Development of numerical methods for the solution of Stokes system with slip 13

boundary conditions (Tresca friction conditions) is a challenging task whose diffi- 14

culty lies in the nonlinear conditions. Such boundary conditions have to be taken 15

into account in many situations arising in practice, in flow of polymers (see [10] and 16

references therein). 17

The paper is devoted to domain decomposition methods (DDM in short) for the 18

Stokes problem with the slip boundary conditions. The original domain is cut into 19

two sub-domains and the augmented Lagrangian formulation for separate resulting 20

Poisson problems in both domains is used for computations. To relate solutions of 21

these two sub-problems to the original solution, one has to introduce additional con- 22

straints “gluing“ them together. The domain decomposition formulation is based on 23

the Uzawa block relaxation method for the augmented Lagrangian involving three 24

supplementary conditions. The paper is concluded by preliminary several numerical 25

examples. 26

2 Setting Stokes Problem with Nonlinear Boundary Conditions 27

Let us consider a domain Ω ⊂R
2 with the Lipschitz boundary ∂Ω which is split into 28

two non-empty and non-overlapping parts Γ0 and Γ . We denote by n the outward 29

unit normal to ∂Ω and un, respectively ut , the normal, respectively the tangential, 30

component of u. We also make use of σt for the tangential component of the stress 31

vector σ(u)n. The problem consists in finding the velocity field u and the pressure 32

p for the following Stokes problem with nonlinear boundary condition of Tresca 33

friction type: 34
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div(νε(u))+∇p = f in Ω

div(u) = 0 in Ω

u = 0 on Γ0

un = 0 on Γ

|σt | ≤ g on ∂Ω

|σt |< g⇒ ut = 0 on Γ

|σt |= g⇒∃k > 0 a constant such that ut = −kσt on Γ

(1)

where f is in L2(Ω), g ∈ L2(Γ ), g > 0 is the given slip bound on Γ and | · | is the 35

euclidean norm. 36

One can derive the variational formulation of (1): 37

{
Find u ∈Vdiv(Ω) such that :∀v ∈ Vdiv(Ω)

a(u,v−u)+ j(v)− j(u)≥ L(v−u),
(2)

with 38

V(Ω) =
{

v ∈H1(Ω), v|Γ0
= 0,vn = 0 on Γ

}
, 39

40

Vdiv(Ω) =
{

v ∈ V(Ω) , div(v) = 0 in Ω
}
, 41

42

a(u,v) =
∫

Ω
νε(u) : ε(v)dΩ , L(v) =

∫
Ω

fvdΩ , j(v) =
∫

Γ
g|vt |dΓ . 43

Problem (2) is an elliptic variational inequality of the second kind which has a unique 44

solution [3]. Moreover, since the bilinear form a(·, ·) is symmetric (2) is equivalent 45

to the following constrained non-differentiable minimization problem: 46

Find u ∈ Vdiv(Ω) such that : J (u)≤J (v) ∀v ∈ Vdiv(Ω), (3)

where J (v) =
1
2

a(v,v)+ j(v)−L(v) is the total potential energy functional. 47

3 Uzawa DDM for Stokes Problem with Tresca Friction 48

We now study the domain decomposition of (3). We first rewrite (3) in the following 49

more useful form. Suppose that ϕ = vt , then the minimization problem (3) becomes: 50

⎧⎨
⎩

Find (u,Φ) ∈Π such that:

Σ(u,Φ) ≤ Σ(v,ϕ)∀(v,ϕ) ∈Π ,
(4)

where 51

Π = {(v,ϕ) ∈Vdiv(Ω)×H
1
2 (Γ ) such that ϕ = vt}, 52
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and Σ is the Lagrangian defined on Π by: 53

∀(ϕ ,v) ∈Π Σ(v,ϕ) =
1
2

a(v,v)−L(v)+ j(ϕ). (5)

Let {Ω1,Ω2} be a partition of Ω , as shown in Fig. 1, and let 54

Γ12 = Γ21 = ∂Ω1∩∂Ω2, Γi = Γ ∪∂Ωi, Γ 0
i = Γ0∪∂Ωi,

vi = v|Ωi , pi = p|Ωi ,

V(Ωi) =
{

vi ∈H1(Ωi), vi|Γ 0
i
= 0, vi.ni|Γi

= 0
}
,

Vdiv(Ωi) =
{

vi ∈V(Ωi) , div(vi) = 0 in Ωi

}
.

Restrictions of the functionals a and Σ over Ωi are defined by ai and Σi respectively. 55

Inner products over a given part S of ∂Ωi, i = 1,2, and Ωi are defined by 56

(u,v)S =

∫
S

uvdΓ and (u,v)Ωi =

∫
Ωi

uvdx. 57

We treat the pressure as a Lagrange multiplier associated with the constraint

1

120
1

1

1

2

0
2

2

2

Fig. 1. Decomposition of Ω into two subdomains

58

div(u) = 0. Using the decomposition of Fig. 1, the functional (5) becomes 59

Σ(v,ϕ) = Σ1(v1,ϕ1)+Σ2(v2,ϕ2). (6)

It is clear that problem (3) is equivalent to the following constrained minimization 60

problem: 61

∀(vi,ϕi) ∈V(Ωi) × H
1
2 (Γi), i = 1,2

Σ(u1,Φ1)+Σ(u2,Φ2) ≤ Σ1(v1,ϕ1)+Σ2(v2,ϕ2)

div(ui) = 0 in Ωi,

uit −Φi = 0 in Γi,

ui−Ψ = 0 in Γ12.

(7)
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The auxiliary interface unknown Ψ is added to the continuity constraint to avoid 62

coupling between u1 and u2 in the penalty term. This so-called three-field formula- 63

tion has been used in domain decomposition of elliptic problems [9]. To ensure the 64

uniqueness of the pressure, the following constraint can be added 65

∫
Ω1

p1 dΩ1 +

∫
Ω2

p2 dΩ1 = 0. (8)

Then, we introduce the set 66

P =

{
(q1,q2) ∈ L2(Ω1)×L2(Ω2) such that

∫
Ω1

q1 dΩ1 +

∫
Ω2

q2 dΩ1 = 0

}
67

We can associate to (7) the augmented Lagrangian functional Lr defined by 68

Lr (u,Φ,Ψ , p,μ ,λ ) = Σ(u1,Φ1)+Σ(u2,Φ2)

+
2

∑
i=1

[
(μi,Φi−uit)Γi − (pi,div(ui))Ωi +(λi,ui−Ψ)Γ12

]

+
2

∑
i=1

[ r1

2
||div(ui)||2L2(Ωi)

+
r2

2
||Φi−uit||2L2(Γi)

+
r3

2
||ui−Ψ ||2L2(Γ12)

]
.

(9)

where r1, r2 and r3 are the penalty parameters which are strictly positive. 69

Remark 1. The standard L2 scalar product (not equivalent to the H1/2 scalar product) 70

on the interface Γ12 and Γi is used in the definition of (9). This approach is easy to 71

implement but it has some negative effects on the convergence of our algorithm. 72

Then, problem (7) is equivalent to the following saddle-point problem: 73

⎧⎨
⎩

Find (u,Φ,Ψ , p,μ ,λ ) ∈H such that: ∀(v,Φ,Ψ ,q, μ̃ , λ̃ ) ∈H

Lr(u,Φ,Ψ ,q, μ̃ , λ̃ )≤Lr(u,Φ,Ψ , p,μ ,λ )≤Lr(v,Φ,Ψ , p,μ ,λ ).
(10)

where u=(u1,u2)∈V(Ω1)×V(Ω2), Φ=(Φ1,Φ2)∈ L2(Γ1)×L2(Γ2), Ψ ∈ (L2(Γ12))
2, 74

p = (p1, p2) ∈ P, μ = (μ1,μ2) ∈ L2(Γ1)× L2(Γ2) and λ ∈ (L2(Γ12))
2. H is the 75

Cartesian product of all these spaces. 76

3.1 Uzawa Block Relaxation Method: UBR2 77

In order to solve (10) we use Uzawa block relaxation algorithm based on ALG2, see 78

[4]. This leads to the following iterations: 79

Initialization: Φ−1, Ψ−1, p0, λ 0, μ0 and ri > 0 fixed. 80

Repeat until convergence: 81

1. Find uk ∈ V(Ω1)×V(Ω2) such that: ∀v ∈ V(Ω1)×V(Ω2) 82

Lr(u
k,Φk−1,Ψ k−1, pk,μk,λ k)≤Lr(v,Φk−1,Ψ k−1, pk,μk,λ k). (11)



Page 691

UN
CO

RR
EC

TE
D

PR
O
O
F

Domain Decomposition Method for Stokes Problem with Tresca Friction

2. Find Φk ∈ L2(Γ1)×L2(Γ2) such that: ∀Φ ∈ L2(Γ1)×L2(Γ2) 83

Lr(u
k,Φk,Ψ k−1, pk,μk,λ k)≤Lr(u

k,Φ,Ψ k−1, pk,μk,λ k). (12)

3. Find Ψ k ∈ (L2(Γ12))
2 such that: ∀Ψ ∈ (L2(Γ12))

2. 84

Lr(u
k,Φk,Ψ k, pk,μk,λ k)≤Lr(u

k,Φk,Ψ , pk,μk,λ k). (13)

4. Lagrange multipliers update 85

pk+1
i = pk

i − r1div(uk
i ), (14)

λ k+1
i = λ k

i + r2(u
k
i|Γ12
−Ψ k), (15)

μk+1
i = μk

i + r3(u
k
it −Φk

i ). (16)

Subproblem (11) is equivalent to solving, in each subdomain, the following problem: 86

Find uk
i ∈ V(Ωi) such that

a(uk
i ,v)+ r1(∇.uk

i ,∇.vi)Ωi + r2(ui,vi)Γ12 + r3(u
k
t ,vt)Γ = (fi,vi)+ (pi,∇.vi)Ωi

+(r2Ψ k−λ k,vi)Γ12 +(r3Φk−1
i − μk

i ,vit)Γi ∀vi ∈ V(Ωi). (17)

The subproblems of steps 2 and 3 are uncoupled and consists in the following calcu- 87

lations: 88

Φk
i =

⎧⎪⎪⎨
⎪⎪⎩

||μk
i + r3 uk

it ||0,Γi −g

r3||μk
i + r3 uk

it ||0,Γi

(μk
i + r3uk

it) if ||μk
i + r3uk

it ||0,Γi ≥ g

0 unless

(18)

and 89

Ψ k =
1

2r2
(λ k

1 +λ k
2 )+

1
2
(uk

1 + uk
2)|Γ12 . (19)

90

Remark 2. For sake of simplicity the given slip bound g is assumed to be non- 91

negative constant in (18). 92

Remark 3. After update (14), pk+1 must be projected onto P to ensure the uniqueness 93

of the pressure. 94

Remark 4. The main advantage of this formulation is that (17) reduces to 2D un- 95

coupled elliptic problems which can be solved in parallel. Moreover, the matrices 96

derived from discret problems are symmetric and positive definite. 97
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4 Numerical Experiments 98

The domain decomposition algorithm UBR2, with r1 = r2 = r3, presented in the 99

previous section was implemented in Matlab V7.9 on a Core2 Duo-1.8 Ghz processor 100

PC. For discrete velocity-pressure-Lagrange multipliers spaces, we use the P1-iso- 101

P2/P1 finite element. These spaces are well known to satisfy the discrete Babuska- 102

Brezzi inf-sup condition [1]. 103

For all the numerical experiments presented, the domain Ω is the square [0,0.1]2, 104

while Ω1 = [0,0.05]× [0,0.1] and Ω2 = [0.05,0.1]× [0,0.1]. The fluid can slip on 105

Γ1∪Γ2 = [0,0.1]×{0.1}∪ [0,0.1]×{0}, We set g = 0.015 which is consistent with 106

experimental values, see [5]. The viscosity is taken equal to 0.1 and the stopping 107

tolerance ε is 10−6. In addition we enforce parabolic profile on both Γ 0
1 = {0}× 108

[0,0.1] and Γ 0
2 = {0.1}× [0,0.1]: 109

u|Γ 0
1
= u|Γ 0

2
=

[
y(1− y)
−y(1− y)

]

Remark 5. We choose this profile to enforce shear stress near the solid wall to reach 110

the threshold without considering a complicated domain geometry. 111

In Fig. 2 we report the velocity field for the solution of Stokes problem with Tresca 112

friction (1) in Ω and in Ω1∪Ω2. We can see that we have the same velocity profile. 113

In Table 1 we report the discrete mesh size h, the corresponding number of degree
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Fig. 2. Fluid flow with Tresca BC for one (left) and two domains (right)
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114

of freedom (d.o.f) and number of elements on each subdomain in the follows exper- 115

iments. Table 2 shows the number of iterations IT, the sequential CPU (in seconds) 116

times and the parallel CPU* times (when subproblems (17) for i = 1,2 are solved in 117

parallel). For several mesh size and for NSD (Number of Sub-Domains) equal to 1 118

or 2. We notice that the UBR2 algorithm is a h-dependent algorithm and the domain 119

decomposition method to be preferable when dealing with parallel computing using 120

parallel solver. 121

Table 3 show how the number of iterations and the optimal value of the relax- 122

ation parameter ropt depend on h. We remark that the speed of convergence is very 123

sensitive to r; this explains the strong increase in the number of iterations for a finer 124

mesh. 125
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h = 0.02 h = 0.01 h = 0.0067 h = 0.005 h = 0,004
NSD n/n� n/n� n/n� n/n� n/n�

1 189/336 665/1284 1577/3032 2829/5496 4393/8548
2 112/188 370/676 806/1516 1396/2668 2220/4284

Table 1. h: mesh size; n: number of d.o.f. by domain n�: number of elements by domain.

t2.1h = 0.02 h = 0.01 h = 0.0067 h = 0.005 h = 0,004

t2.2
NSD IT/CPU/CPU* IT/CPU/CPU* IT/CPU/CPU* IT/CPU/CPU* IT/ CPU/CPU*

t2.31 199/0.41/- 349/2.8/- 453/10.8/- 509/30.36/- 595/67.3/-
t2.42 486/1/0.81 769/4.8/3.27 993/15.3/7.96 1294/41.14/21.98 1599/99.34/51.59

Table 2. Standard speed-up for h: mesh size; IT: number of iterations; CPU & CPU*:
CPU times.

h = 0.02 h = 0.01 h = 0.0067 h = 0.005 h = 0,004
NSD ropt /IT ropt /IT ropt /IT ropt /IT ropt /IT
1 335/199 590/349 740/453 840/509 1010/595
2 116/486 124/769 175/993 230/1294 290/1599

Table 3. Convergence rate with respect ropt .

5 Conclusion 126

The augmented Lagrangian formulation (9) of domain decomposed Stokes problem 127

with Tresca friction leads to a numerical strategy which solves a classical Poisson 128

problem (17) (in each subdomain Ωi) and the contribution of Tresca friction (18) in 129

a decoupled way. Nevertheless, this algorithm has a mesh dependent convergence 130

and its practical implementation still facing the issue of the optimal choice of the 131

penalties, ri, i = 1,2,3. To improve this algorithm, different preconditioners will be 132

investigated, especially the Steklov-Poincaré operator on the interface (see e.g. [6– 133

8]) and the Cahouet-Chabard preconditioner [2] for the pressure multiplier. 134
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