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1 Introduction 8

The purpose of this article is to present convergence bounds and some preliminary 9

numerical results for a special category of problems of compressible and almost in- 10

compressible linear elasticity when using FETI-DP or BDDC domain decomposition 11

methods. 12

We consider compressible and almost incompressible elasticity on the compu- 13

tational domain Ω ⊂ IR3 which is partitioned into a number of subdomains. We 14

introduce nodes in the interior of the subdomains and on the interface. We distribute 15

the material parameters such that in a neighborhood of the interface we have com- 16

pressible and in the interior of a subdomain we have almost incompressible linear 17

elasticity. Thus, each subdomain may contain an almost incompressible component 18

in its interior surrounded by a hull of compressible material. We will also refer to 19

this component as the incompressible inclusion. 20

By performing our analysis on the compressible hull, we can prove new condition 21

number bounds. Such bounds will depend on the variation of the Poisson ratio ν in 22

a neighborhood of the interface of the subdomains. More precisely, for compressible 23

linear elasticity in a neighborhood of the interface and almost incompressible linear 24

elasticity in the interior of the subdomains, we can prove a polylogarithmic condition 25

number bound for the preconditioned FETI-DP system, which also depends on the 26

thickness η of the compressible hull. 27

The condition number estimate presented in this contribution is based on the the- 28

ory developed in [8] for compressible linear elasticity. It can be seen as an extension 29

to certain configurations of incompressible components. For an algorithmic descrip- 30

tion of the FETI-DP method and the primal constraints applied in this paper, we refer 31

to [5, 6]. The current work can also be seen as an extension of the work of [13–15]. 32

There, the one-level FETI method for scalar elliptic problems is analyzed for special 33

cases of coefficient jumps inside subdomains. 34

Coarse spaces for iterative substructuring methods that are robust either with 35

respect to exact incompressibility constraints or with respect to almost incompress- 36

ibility have been known for some time. For earlier work on Neumann-Neumann, 37
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FETI-DP, and BDDC methods for (almost) incompressible elasticity, see, e.g., 38

[4, 9, 10, 12]. 39

2 Almost Incompressible Linear Elasticity 40

Let Ω ⊂ IR3 be a polytope, which can be decomposed into smaller cubic subdomains. 41

We can allow also for subdomains that are images of cubes under a reasonable map- 42

ping. 43

The domain is fixed on ∂ΩD ⊂ ∂Ω , i.e., we impose Dirichlet boundary con- 44

ditions, and the remaining part ∂ΩN = ∂Ω \ ∂ΩD is subject to a surface force g. 45

Let H1
0 (Ω ,∂ΩD) :=

{
v ∈ (H1(Ω))3 : v |∂ΩD

= 0
}

be the Sobolev space which is ap- 46

propriate for the variational formulation. Furthermore, the linearized strain tensor 47

ε = (εi j)i j is defined as ε(u) = 1
2 (∇u+(∇u)T ) with u ∈ (H1(Ω))3. 48

Then, the linear elasticity problem is defined as follows. 49

Find the displacement u ∈ H1
0 (Ω ,∂ΩD), such that for all v ∈ H1

0 (Ω ,∂ΩD) 50

∫
Ω

G ε(u) : ε(v) dx+
∫

Ω
G β div(u) div(v) dx =< F,v > 51

with the material parameters G, β , and the right hand side 52

< F,v > =

∫
Ω

f T v dx+
∫

∂ΩN

gT v dσ .

The material parameters G and β can also be expressed using Young’s modulus 53

E and the Poisson ratio ν by G = E
1+ν and β = ν

1−2ν . We analyze linear elasticity 54

problems with different material components. For the compressible part we use the 55

standard displacement formulation, i.e., we discretize the displacement by piecewise 56

quadratic tetrahedral finite elements. 57

For almost incompressible linear elasticity, i.e., when ν→ 1
2 , the value of β tends 58

to infinity, and the discretization of the standard displacement formulation of linear 59

elasticity by low order finite elements leads to locking effects and slow convergence. 60

As a remedy the displacement problem is replaced by a mixed formulation. There- 61

fore, we introduce the pressure p := G β div(u) ∈ L2(Ω) as an auxiliary variable. 62

We consider the problem: Find (u, p) ∈ H1
0 (Ω ,∂ΩD)×L2(Ω), such that 63

∫
Ω

G ε(u) : ε(v) dx+
∫

Ω
div(v) p dx = 〈F,v〉 ∀v ∈ H1

0 (Ω ,∂ΩD)

∫
Ω

div(u) q dx−
∫

Ω

1
G β

p q dx = 0 ∀q ∈ L2(Ω).

It is well-known that in the case of almost incompressible linear elasticity, the solu- 64

tion of this mixed formulation exists and is unique. 65

For the discretization of this mixed problem we can in principle use any inf-sup 66

stable mixed finite element method. For simplicity we use Q2−P0 mixed finite el- 67

ements, i.e., we discretize the displacement with piecewise triquadratic hexahedral 68
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finite elements and the pressure with piecewise constant elements. This discretization 69

is known to be inf-sup stable, which, in 3D, can be derived from the results in [11]. 70

To obtain again a symmetric positive definite problem, the pressure is statically con- 71

densated element-by-element. We assume that a triangulation τh of Ω is given with 72

shape regular finite elements, having a typical diameter h. Additionally, we assume 73

that Ω can be represented exactly as a union of finite elements. 74

The domain Ω is now decomposed into N nonoverlapping subdomains Ωi, i = 75

1, . . . ,N,with diameter Hi. The resulting interface is given byΓ :=
⋃

i�= j (∂Ωi∩∂Ω j)\ 76

∂ΩD. We assume matching finite element nodes on the neighboring subdomains 77

across the interface Γ . 78

Then, for each subdomain we assemble the corresponding linear system 79

K(i)u(i) = f (i). 80

From the local linear systems, we obtain the FETI-DP saddle point problem, 81

which is solved using a FETI-DP algorithm; see e.g., [1, 2, 5–8] for references on 82

this algorithm. In this article we consider in particular the algorithm given in [5, 6, 8]; 83

see the latter references for an algorithmic description of parallel FETI-DP methods 84

using primal edge constraints and a transformation of basis. Here, in particular, we 85

assume that all vertices are primal and all edge averages over all subdomain edges 86

are the same across the interface Γ . 87

In our analysis, each of the N subdomains may contain an almost incompressible 88

part, here also called an inclusion or a component, surrounded by a compressible 89

hull. We will specify the definitions of a hull as follows. 90

Definition 1. The hull of a subdomain Ωi with width η is defined as 91

Ωi,η := {x ∈Ωi : dist(x,∂Ωi)< η} ; see Fig. 1. 92

Fig. 1. Ωi,η : hull of Ωi; see Definition 1

3 Convergence Analysis 93

In this section we provide a condition number estimate for the preconditioned FETI- 94

DP matrix M−1F, where F is the FETI-DP system matrix obtained from K(i) and 95
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M−1 is the standard Dirichlet preconditioner; see [16]. We expand the convergence 96

analysis, given in [8] for compressible linear elasticity, to the case where each subdo- 97

main can contain an almost incompressible inclusion surrounded by a compressible 98

hull of thickness η . For the analysis, we make the following assumption; see [3] 99

where the full details are provided. 100

Assumption 1 For each subdomain, we have an inclusion which can be either al- 101

most incompressible or compressible, surrounded by a hull Ωi,η of compressible ma- 102

terial. The material coefficients G(x) and β (x) have a constant value in the interior 103

inclusion and in the hull respectively, i.e., 104

G(x) =

{
G1,i x ∈Ω i,η
G2,i x ∈Ωi \Ωi,η

β (x) =
{

β1,i x ∈Ω i,η
β2,i x ∈Ωi \Ωi,η .

105

Remark 1. Note that Assumption 1 allows that the Young modulus in the inclusion 106

can be different from the one in the hull and that their quotient can be arbitrarily 107

small or large. 108

The following assumption allows for the improved bound (2) in Theorem 1, 109

which contains a linear factor H/η compared to the factor (H/η)4 in (1). 110

Assumption 2 For each subdomain Ωi, i = 1, . . . ,N, we assume that G1,i ≤ ki ·G2,i, 111

where ki > 0 is a constant independent of h,H,η ,G1,i, and G2,i. 112

In the analysis provided in [3], for the edge term estimate, we need a further 113

assumption. 114

Assumption 3 For any pair of subdomains (Ωi,Ωk) which have an edge in common, 115

we assume that there exists an acceptable path (Ωi,Ω j1 , . . . ,Ω jn ,Ωk) from Ωi to Ωk, 116

via a uniformly bounded number of other subdomains Ωiq , q = 1, . . .n, such that the 117

coefficients G1, jq of the Ωiq satisfy the condition 118

TOL ·G1, jq ≥min(G1,i,G1,k), q = 1, . . . ,n. 119

For a detailed description of the concept of acceptable paths, see [8, Sect. 5]. 120

The following theorem is proven in [3]. 121

Theorem 1. Under the Assumptions 1 and 3, the condition number of the precondi- 122

tioned FETI-DP system satisfies 123

κ(M−1F)≤C max(1,TOL)

(
1+ log

(
H
h

))(
1+ log

(η
h

))(H
η

)4

, (1)

where C > 0 is independent of h,H,η , and the values of Gi and βi, i = 1, . . . ,N and 124

hence also of Ei and νi. 125

If additionally Assumption 2 is satisfied, we have 126

κ(M−1F)≤C max(1,TOL)

(
1+ log

(
H
h

))2 (H
η

)
, (2)

where C > 0 is independent of h,H,η , and the values of Gi and βi, i = 1, . . . ,N and 127

hence also of Ei and νi. 128
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4 Numerical Results 129

In this section, we present our numerical results for a linear elasticity problem in 130

three dimensions. We consider almost incompressible inclusions in the interior of 131

the subdomains. The inclusions are always surrounded by a compressible hull with 132

ν = 0.3. We use a FETI-DP algorithm with vertices and edge averages as primal 133

constraints to control the rigid body modes. For the algorithmic concept, see for 134

example [8]. The numerical results confirm our theoretical estimates. 135

Our tests are divided into different categories. 136

4.1 Variable Thickness of the Compressible Hull 137

Here, we present results for 3× 3× 3 subdomains, a fixed H/h = 11, and a fixed 138

Poisson ratio ν = 0.499999 in each inclusion and ν = 0.3 in each hull. For these 139

computations we vary the thickness of the hull, i.e., η = 0,h, . . . ,5h; see Table 1. 140

For the case η = 0, we obtain a large condition number of κ =1,597.8. This is not 141

surprising since we use a coarse space designed for compressible linear elasticity. In 142

this case using a different, larger coarse space in 3D is the remedy; see, e.g., [10] 143

or [12]. 144

It is striking that already a hull with a thickness of one element, i.e., η = h, is 145

sufficient to obtain a good condition number which is then not improved significantly 146

by further increasing η . As a result, the number of iteration steps does not change for 147

η = h, . . . ,5h. In our theory, see Theorem 1, for this configuration of coefficients, our 148

bound is linear in H/η . From the numerical results in Table 1 we cannot conclude 149

that the bound is sharp. This might be due to the fact, that in 3D we cannot choose 150

our mesh fine enough. However, for 2D problems using very fine meshes the linear 151

dependence on H/η can be observed numerically; see Table 2. 152

Table 1. Growing η; H/h = 11; 1/H = 3.

η iterations condition number
0 50 1597.8

1h 32 12.366
2h 32 12.250
3h 32 12.230
4h 32 12.231
5h 32 12.233

Growing η for 3×3×3 subdomains, E = 210 on the whole domain, ν = 0.499999
in each inclusion, and ν = 0.3 in each hull. The results show only a weak dependence
on η .
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Table 2. Growing η; 2D; H/h = 200; 1/H = 3

η iterations condition number
1/100 47 199.906
2/100 41 102.081
3/100 42 70.719
4/100 36 54.674

Linear elasticity in 2D with Ω = [0,1]2, discretized with Q1− P0 stabilized finite
elements; for a description of the discretization, see, e.g., [9]. The domain is decom-
posed into square subdomains with sidelength H, having square inclusions and a hull
of thickness η . The Poisson ratio in each inclusion is chosen as ν = 0.4999999 and
in each hull as ν = 0.3. The Young modulus is chosen as E = 1 on the whole domain.
The results confirm the linear dependence on H/η .

4.2 Variable Incompressibility in the Inclusions 153

In Table 3, we vary the Poisson ratio in the inclusions from ν = 0.4 up to ν = 154

0.499999 while choosing a fixed number of elements in each subdomain, i.e., H/h= 155

7, and a thickness of the hull of η = h. We see that the condition number is indeed 156

bounded independently of the almost incompressibility in the inclusions as expected 157

from Theorem 1. 158

Table 3. Growing ν; H/h = 7; 1/H = 3; η = h.

ν iterations condition number
0.4 27 9.4841
0.49 28 9.5038
0.499 28 9.5063
0.4999 28 9.5049
0.49999 28 9.5066
0.499999 29 9.5066

Growing ν for 3×3×3 subdomains, η = h, ν = 0.3 in the hulls, and E = 210 on the
whole domain. A hull with a thickness of one element is clearly sufficient to obtain
a good condition number.

4.3 Variable Young’s Modulus in the Inclusions Combined with Variable 159

Incompressibility in the Inclusions 160

In a last set of experiments, see Table 4, we consider subdomains with inclusions of 161

a high and low Young modulus, i.e., E = 1e+ 4 and E = 1e− 4, either combined 162

with a Poisson ratio of ν = 0.4 or ν = 0.499999; see Fig. 2. The Young modulus of 163



Page 379

UN
CO

RR
EC

TE
D

PR
O
O
F

FETI-DP for Almost Incompressible Components

the hull is always E = 1 and its Poisson ratio is always ν = 0.3. The four different 164

parameter settings are determined by the number of the subdomain modulo four; see 165

Fig. 2. In our theory, the condition number bound for such a configuration contains a 166

factor (H/η)4. However, the results in Table 4 are not worse than in the configura- 167

tions where bound (1) of Theorem 1 applies, which contains only a linear H/η . The 168

condition number is surprisingly low even if the thickness of the hull is only η = h. 169

While this is a favorable result it also means that it is difficult to confirm numerically 170

whether our theoretical bounds are sharp with respect to η . 171

Fig. 2. Types of subdomains, see Table 4, identified by color

Table 4. Growing η; H/h = 7; 1/H = 3.

distance η iterations condition number
0 > 250 13426

1h 36 11.956
2h 29 9.2575
3h 29 9.4767
4h 27 9.4812

Growing η for 3×3×3 subdomains. Four different kind of material parameter set-
tings in the inclusions: E = 1e+4 and ν = 0.4; E = 1e−4 and ν = 0.4; E = 1e+4
and ν = 0.499999; E = 1e−4 and ν = 0.499999; for all hulls: E = 1,ν = 0.3.
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