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Summary. We consider a linear-quadratic elliptic control problem (LQECP). For the problem 8

we consider here, the control variable corresponds to the Neumann data on the boundary of 9

a convex polygonal domain. The optimal control unknown is the one for which the harmonic 10

extension approximates best a specified target in the interior of the domain. We propose a 11

multilevel preconditioner for the reduced Hessian resulting from the application of the Schur 12

complement method to the discrete LQECP. In order to derive robust stabilization parameters- 13

free preconditioners, we first show that the Schur complement matrix is associated to a linear 14

combination of negative Sobolev norms and then propose preconditioner based on multilevel 15

methods. We also present numerical experiments which agree with the theoretical results. 16

1 Introduction 17

The problem of solving linear systems is central in numerical analysis. Systems aris- 18

ing from the discretization of PDEs and control problems have received special atten- 19

tion since they appear in many applications, such as in fluid dynamics and structural 20

mechanics. Typically, as the dimension of the discrete space increases, the resulting 21

system becomes very ill-conditioned. To avoid the large cost of LU factorizations of 22

KKT saddle point linear systems, we consider instead the reduced Hessian systems. 23

To build efficient solvers, the spectral properties of these systems must be taken into 24

account. In this paper, we develop the mathematical tools necessary to analyze and to 25

design solvers for a model control problem. We believe that the proposed framework 26

can be extended to more complex control problems. 27

2 Setting Out the Problem 28

Consider the following LQECP: 29

Minimize J(u,λ ) := ‖u−u∗‖2
L2(Ω)

+ α
2 ‖λ‖2

H−1/2(Γ )
+ β

2 ‖λ‖2
L2(Γ )

subject to

{−Δu(x) = f (x) in Ω ⊂ R
2,

γ ∂u
∂η (s) =−λ (s) on Γ := ∂Ω ,

(1)
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where u∗ and f are given functions in L2(Ω)\R, γ is the trace operator on Γ , and α 30

and β are nonnegative given stabilization parameters. The minimization is taken on 31

u∈H1(Ω)\R and λ ∈ L2(Γ )\R. Here, “\R” stands for functions with zero average 32

on Ω or Γ . We assume that the domain Ω is a convex polygonal domain, hence, 33

H2-regularity of u is assumed. The norm H−1/2(Γ ) is defined as 34

‖λ‖2
H−1/2(Γ )

:= |vλ |2H1(Ω), (2)

where vλ ∈ H1(Ω)\R is the harmonic extension of λ in Ω . We remark that the 35

assumption α + β > 0 is necessary for the well-posedness of the problem (1), see 36

[7, 9, 11] and references therein. The case α = β = 0 can also be treated by en- 37

larging the minimizing space for λ from H−1/2(Γ )\R to H−3/2
t,00 (Γ )\R; see [6] for 38

details. To make the notation less cumbersome, we sometimes drop “\R” below. 39

40

We consider the following discretization for the LQECP (1). We consider the 41

space of piecewise linear and continuous functions Vh(Ω)⊂ H1(Ω) to approximate 42

u and p, and Λh(Γ )⊂H1/2(Γ ) (the restriction of Vh(Ω) to Γ ) to approximate λ . The 43

underlying triangulation τ h(Ω) is assumed to be quasi-uniform with mesh size O(h). 44

Let {φ1(x), . . . ,φn(x)} and {ϕ1(x), . . . ,ϕm(x)} denote the standard hat nodal basis 45

functions for Vh(Ω) and Λh(Γ ), respectively. The corresponding discrete problem 46

associated to (1) results in 47⎡
⎢⎣

M 0 AT

0 G QT ET

A EQ 0

⎤
⎥⎦
⎡
⎢⎣

u

λ
p

⎤
⎥⎦=

⎡
⎢⎣

f1

f2

f3

⎤
⎥⎦ , (3)

where the matrices M and A are the mass and stiffness matrices on Ω , and Q is the 48

mass matrix on Γ . We define Qexti j = (φi,ϕ j)L2(Γ ); φi ∈Vh(Ω) and ϕ j ∈Λh(Γ ). It is 49

easy to see that Qext = EQ, where E ∈R
n×m is the trivial zero discrete extension op- 50

erator defined from Λh(Γ ) to Vh(Ω). We define G∈Rm×m as be the matrix associated 51

to the norm α
2 ‖ · ‖2

H−1/2
h (Γ )

+ β
2 ‖ · ‖2

L2(Γ )
on Λh(Γ ), where ‖λ‖

H
−1/2
h (Γ )

:= |vh
λ |H1(Ω) 52

with vh
λ :=A†Qextλ , i.e., vh

λ is the discrete harmonic extension version of (2) with λ ∈ 53

Λh(Γ ). Hence, we have G = α(QT
extA

†)A(A†Qext )+β Q= QT (αET A†E+β Q−1)Q. 54

Here and the following A† is the pseudo inverse of A. The discrete forcing terms are 55

defined by (f1)i =
∫

Ω u∗(x)φi(x)dx, for 1≤ i≤ n, f2 = 0 and (f3)i =
∫

Ω f (x)φi(x)dx. 56

3 The Reduced Hessian H 57

In this paper we propose and analyze preconditioners for the reduced Hessian 58

associated to (3). Eliminating the variables u and p from Eq. (3), and denoting 59

S†
1 := ET A† E and S†

3 := ET A†MA†E , we obtain 60

H λ := Q(αS†
1 +β Q−1 + S†

3)Qλ = b := QT
extA

†MA†f3−QT
extA

†f1. (4)

The matrix H is known as the Schur complement (reduced Hessian) with respect 61

to the discrete control variable λ . We observe that the state variable u can be obtained 62
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by solving (4) and using the third equation of (3). We note that the Reduced matrix 63

H is a symmetric positive definite matrix on 64

Λh(Γ )\QR := {λ ∈Λh(Γ );(λ ,1)L2(Γ ) = (Qλ ,1m)�2 = 0}, 65

hence, we consider the Preconditioned Conjugate Gradient (PCG) with a precon- 66

ditioner acting on Λh(Γ )\QR. Note also that A† is also symmetric positive definite 67

matrix on 68

Vh(Ω)\MR := {u ∈Vh(Ω);(u,1)L2(Ω) = (Mu,1n)�2 = 0}. 69

The main goal of this paper is to develop robust preconditioned multilevel methods 70

for the matrix H such that the condition number estimates that do not depend on α 71

and β , and depend on log2(h). 72

73

We point out that several block preconditioners for solving systems like (3) were 74

proposed in the past; see [1, 8, 11, 14] and references therein. These preconditioners 75

depend heavily on the availability of a good preconditioner for the Schur complement 76

matrix. To the best of our knowledge, no robust and mathematically sounded pre- 77

conditioner was systematically carried out for the reduced Hessian (4). Most of the 78

existing work is toward problems where the control variable is f rather than λ , and 79

even for these cases, condition number estimates typically deteriorate when all the 80

stabilization parameters go to zero. Related work to ours is developed in [13] where 81

it is proposed a preconditioner for the first biharmonic problem discretized by the 82

mixed finite element method introduced by Ciarlet and Raviart [4]. Using techniques 83

developed in [5], Peisker transforms the discrete problem to an interface problem and 84

a preconditioner based on FFT is proposed and analyzed. This approach can also be 85

interpreted as a control problem like (1), however, replacing the Neumann control 86

by a Dirichlet control. We note that Dirichlet control problems are much easier to 87

handle and to study since in (4) the operator S†
3 is replaced by S†

1, and therefore, a 88

multilevel method such as in [2], can be applied. An attempt to precondition the Neu- 89

mann control problem via FFT was considered in [7], however, such as in Peisker’s 90

work, it holds only for special meshes where the Schur complement matrix and the 91

mass matrix on Γ share the same set of eigenvectors. 92

4 Theoretical Remarks on the Reduced Hessian H 93

In this section we associate the Reduced Hessian H to a linear combination of 94

Sobolev norms. Here and below we use the notation a � (�) b to indicate that 95

a ≤ (≥)C b, where the positive constant C depends only on the shape of Ω and 96

τ h(Ω). When a� b� a, we say a
 b. 97

98

First we observe that G is associated to the norm α
2 ‖ · ‖2

H
−1/2
h (Γ )

+ β
2 ‖ · ‖2

L2(Γ )
in 99

Λh(Γ ). It is well known that for λ ∈Λh(Γ )\QR we have 100
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λ T QS†
1Qλ = ‖λ‖2

H−1/2
h (Γ )


 ‖λ‖2
H−1/2(Γ )

. (5)

What is not obvious is how to associate the matrix QS†
3Q to a Sobolev norm, and this 101

is given in the following result (see [6]): 102

Theorem 1. Let Ω ⊂ R
2 be a convex polygonal domain. Let vh

λ := A†Qext λ ∈ 103

Vh(Ω)\MR be the discrete harmonic function with Neumann data λ ∈ Λh(Γ )\QR. 104

Then, 105λ T QS†
3Qλ = ‖vh

λ‖2
L2(Ω) 
 ‖λ‖2

H−3/2
t,00 (Γ )

+ h2‖λ‖2
H−1/2(Γ )

. (6)

Using these results we conclude that H is associated to the following linear 106

combination of Sobolev norms 107

λ T H λ 
 (α + h2)‖λ‖2
H−1/2(Γ )

+β ‖λ‖2
L2(Γ ) + ‖λ‖2

H−3/2
t,00 (Γ )

. (7)
108

Remark 1. We next hint why the norm ‖ · ‖2
H
−3/2
t,00 (Γ )

is fundamental for this problem. 109

Let {Γk}1≤k≤K and {δk}1≤k≤K be the edges and the vertices of the polygonal Γ , 110

respectively. Let C∞
t,00(Γk) := {λ ∈ C∞(Γk);∂λ/∂τk ∈ C∞

0 (Γk)}, where τk stands for 111

the tangential unit vector on Γk. Define H2
t,00(Γk) by the closure of C∞

t,00(Γk) in the 112

H2(Γk)-norm, that is, 113

H2
t,00(Γk) := {λ ∈ H2(Γk);

∂λ
∂τk

(δk−1) =
∂λ
∂τk

(δk) = 0}. (8)

Using interpolation theory of operators and a characterization of H3/2
t,00(Γk), see [10], 114

it is possible to show that 115

H3/2
t,00(Γk) :=

[
H2

t,00(Γk),H
1(Γk)

]
1/2

=
{

λ ∈ H3/2(Γk);∂λ/∂τk ∈ H1/2
00 (Γk)

}
.

We define H3/2
t,00(Γ ) = H1/2(Γ )∩∏K

k=1 H3/2
t,00(Γk) endowed with the norm 116

‖λ‖
H3/2

t,00(Γ )
:= ‖λ‖2

H1/2(Γ )
+

K

∑
k=1

∥∥ ∂λ
∂τk

∥∥2
H1/2

00 (Γk)
, (9)

and define H−3/2
t,00 (Γ ) = (H3/2

t,00(Γ ))′. The fundamental property of this space is that 117

‖λ‖
H
−3/2
t,00 (Γ )


 ‖vλ‖L2(Ω), 118

where vλ is defined by (2); see [6]. 119

5 Preconditioning Sobolev Norms Using Multilevel Methods 120

In this section, using multilevel based preconditioners, we develop spectral approx- 121

imations for matrices associated to several Sobolev norms; see [2, 3, 12, 15], and 122

references therein. 123
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5.1 Notation and Technical Tools 124

From now on, we assume that the triangulation τ h of Γ has a multilevel structure. 125

More precisely, denoting τ h as the restriction of τ h(Ω) to Γ , we assume that the 126

triangulation τ h is obtained from (L−1) successive refinements of an initial coarse 127

triangulation τ 0 with initial grid size h0. We assume also that h� = h�−1/2 is the grid 128

size on the �-th triangulation τ � and associate the standard P1 finite element space 129

V�(Γ ) generated by continuous and piecewise linear basis functions {ϕ�
i }m�

i=1. Hence, 130

we have 131

V0(Γ )⊂V1(Γ )⊂ ·· · ⊂VL(Γ ) :=Vh(Γ )⊂ L2(Γ ). 132

Let P� denote the L2(Γ )-orthogonal projection onto V�(Γ ), and let ΔP� := (P�− 133

P�−1), that is, the L2(Γ )-orthogonal projection onto V�(Γ )∩V�−1(Γ )⊥. We have that 134

P0, (P1−P0), . . . ,(PL−PL−1) restricted to VL(Γ ) are mutually L2-orthogonal projec- 135

tions which satisfy: 136

I = P0 +(P1−P0)+ · · ·+(PL−PL−1). (10)

Note that PL = I. The matrix form of P� restricted to VL(Γ ) is given by 137

P� = RT
� Q−1

� R�Q, (11)

where R� is the m�×mL restriction matrix, that is, the i-th row of R� is obtained by 138

interpolating the basis function ϕ�
i ∈V� :=V�(Γ ) at the nodes of the finest triangula- 139

tion τL :=τ h. 140

141

It follows from [2, 12], that for −3/2 < s < 3/2 142

‖v‖2
Hs(Γ ) 


L

∑
�=0

h−2s
� ‖(P�−P�−1)v‖2

L2(Γ ), for all v ∈VL. (12)

This constraint for s comes from the fact that for s ≥ 3/2 we have Vh(Γ ) �⊂ Hs(Γ ), 143

therefore, the equivalence deteriorates when s tends to 3/2. Results for negative 144

norms are obtained by duality. 145

146

We now describe how to represent the splitting ∑L
�=0 μ�‖(P�−P�−1)v‖2

L2(Γ )
into a 147

matrix form. Let Δ� := (P�−P�−1)Q−1 = RT
� Q−1

� R�−RT
�−1Q−1

�−1R�−1. Then we have 148

ΔkQΔ� = δk�Δ� and
L

∑
�=0

μ�‖(P�−P�−1)v‖2
L2(Γ ) =

L

∑
�=0

μ�v
T Q(P�−P�−1)v, (13)

where P−1 = 0. We observe that Q(P�−P�−1) = QΔ�Q is symmetric semi-positive 149

definite. By (12) and (13), for all v ∈VL we have 150

‖v‖2
H−1/2(Γ )


 (
L

∑
�=0

h�Δ�Qv,Qv). (14)

To invert a matrix of the form ∑L
k=0 μ−1

k ΔkQ, we first assume that μk > 0, 0 ≤ 151

k ≤ L. Then, from (10) and (13) we obtain 152

(
L

∑
k=0

μ−1
k ΔkQ)(

L

∑
�=0

μ�Δ�Q) = I. (15)
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5.2 Multilevel Preconditioner for the Reduced Hessian H 153

In this subsection we analyze a multilevel preconditioner for Reduced Hessian H . 154

We first present a preconditioner for G as follows. Using (2), (14) and (15) we obtain 155

156
{

S1 
 Q∑L
�=0 h−1

� Δ�Q,

QS†
1Q 
 Q∑L

�=0 h�Δ�Q.
(16)

The above equivalences yield simultaneous approximation for the spectral repre- 157

sentations of G := β Q+αQS†
1Q in terms of the Δ� and Q. More precisely, 158

G 
 Q∑L
�=1 (β +αh�)Δ�Q, (17)

and using (15) and (17), the following spectral equivalency holds 159

G−1 
 ∑L
�=0 (β +αh�)−1Δ�. (18)

We next establish that ∑L
�=0 (h

−3
� )Δ� is a quasi-optimal preconditioner for QS†

3Q. 160

More precisely, we have the following result (see [6]): 161

Theorem 2. For all vL ∈ VL, the following inequalities hold: 162

‖vL‖2
H
−3/2
t,00 (Γ )

�
L

∑
�=1

h3
�‖ΔP�vL‖2

L2 � (L+ 1)2‖vL‖2
H
−3/2
t,00 (Γ )

. (19)

From Theorems 1 and 2 and (15), we establish the main result, the quasi- 163

optimality for a preconditioner for H . 164

Theorem 3. Let PC := ∑L
�=0 (αh�+β + h3

�)
−1 Δ�. Then 165

(L+ 1)−2PC � H −1 � PC . (20)

6 Numerical Results 166

In this section we show numerical results conforming the theory developed. For all 167

tests presented, Ω is the square domain [0,1]× [0,1]. The triangulation of Ω is con- 168

structed as follows. We divide each edge of ∂Ω into 2N parts of equal length, where 169

N is an integer denoting the number of refinements. In all tests (cond) means con- 170

dition number, (it) indicates the number of iterations of the PCG, (eig min) means 171

the lowest eigenvalue for preconditioned system. To calculate the eigenvalues we 172

build the preconditioned system and use the function eig of MATLAB. We can see 173

from tables below the asymptotic log2(h) behavior for the case α = β = 0, i.e., 174

cond(N + 1)− cond(N) grows linearly with N. As expected, larger is α or β , better 175

conditioned are the preconditioned systems (Tables 1–4).AQ1 176

Remark 2. Numerical experiments show (not reported here) that the largest eigen- 177

value of
(
∑L
�=0 Δ�

) ∗Q divided by the largest eigenvalue of
(
∑L
�=0 h−3

� Δ�

) ∗QS†
3Q 178

converges to 36 when h decreases to zero. In tables above, we considered the rescaled 179

preconditioner 180
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PC r ∗H with β = 1 PC r ∗H with β = (0.1)3

N ↓ cond eig min it cond eig min it
4 1.04237 0.02756 2 4.94294 0.01622 7
5 1.04222 0.02757 2 4.87258 0.01655 7
6 1.04218 0.02757 2 4.85515 0.01663 7
7 1.04217 0.02757 2 4.85084 0.01665 7

Table 1. Equivalence between H and PC r with r = 36 and α = 0.

tPC r ∗H with β = (0.1)6 PC r ∗H with β = 0
tN ↓ cond eig min it cond eig min it
t4 28.1662 0.004747 15 33.5522 0.004016 16
t5 24.3303 0.005739 20 41.9737 0.003407 25
t6 20.3042 0.006984 22 50.5193 0.002930 35
t7 18.9576 0.007514 20 59.2085 0.002550 44

Table 2. Equivalence between H and PC r with r = 36 and α = 0.

t3PC r ∗H with α = 1 PC r ∗H with α = (0.1)3

t3N ↓ cond eig min it cond eig min it
t34 4.62312 0.11893 10 13.7601 0.010698 14
t35 5.12018 0.11826 10 18.3917 0.012503 19
t36 5.33402 0.11798 11 26.2878 0.013139 22
t37 5.45327 0.11788 12 35.6393 0.013312 26

Table 3. Equivalence between H and PC r with r = 36 and β = 0.

PC r ∗H with α = (0.1)6 PC r ∗H with α = 0
4 33.4363 0.004031 16 33.5522 0.0040164 16
5 41.4318 0.003452 25 41.9737 0.0034074 25
6 48.1852 0.003073 33 50.5193 0.0029301 35
7 50.8326 0.002973 43 59.2085 0.0025501 44

Table 4. Equivalence between H and PC r with r = 36 and β = 0.

PC r :=
L

∑
�=0

(αh�+ r β + h3
�)
−1 Δ�, 181

with r = 36, instead of PC := ∑L
�=0 (αh�+ β + h3

�)
−1 Δ�. This change improves 182

considerably the condition number of preconditioners and improve slightly the num- 183

ber of iterations. 184
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