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Summary. We introduce an overlapping time-domain decomposition for linear initial-value 7

problems which gives rise to an efficient solution method for parallel computers without 8

resorting to the frequency domain. This parallel method exploits the fact that homogeneous 9

initial-value problems can be integrated much faster than inhomogeneous problems by using 10

an efficient Arnoldi approximation for the matrix exponential function. 11

1 Introduction 12

We are interested in the parallel solution of a linear initial-value problem 13

u′(t) = Au(t)+ g(t), t ∈ [0,T ], u(0) = u0, (1)

where A ∈ R
N×N is a possibly large (and sparse) matrix and u,g : t �→ R

N . Through- 14

out this paper we assume that the function g(t) is a source term which is difficult 15

to integrate numerically (e.g., highly oscillating or given by a slow computer sub- 16

routine). For example, if (1) arises from the space discretization of a heat-diffusion 17

problem, then A represents a diffusion operator and g(t) is a time-dependent heat 18

source. 19

Problems of the above form arise often in scientific computing, and various solu- 20

tion methods for parallel computers have been proposed in the literature. A popular 21

approach (see, e.g., [1, 8]) is based on the Laplace-transformed equation 22

sû(s)−u0 = Aû(s)+ ĝ(s) 23

and the contour integral representation of the inverse transformation 24

u(t) =
1

2π i

∫
Γ

etsû(s)ds, 25

with a suitable contour Γ surrounding the singularities of û(s) (which are the eigen- 26

values of A and all singularities of ĝ(s)). Discretization of this integral by a quadra- 27

ture formula with complex nodes s j and weights wj yields 28
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u(t)≈
p

∑
j=1

wjû(s j) =
p

∑
j=1

wj(s jI−A)−1(u0 + ĝ(s j)). 29

This method is suitable for parallel computation because the p complex shifted linear 30

systems are decoupled. On the other hand, there are obvious drawbacks such as the 31

introduction of complex arithmetic into a real problem and the need for calculating 32

ĝ(s j). Moreover, many nodes s j may be required to represent a stiff source g(t) to 33

prescribed accuracy. 34

Another approach, perhaps closest in spirit to the method described here, is 35

known as exponential quadrature. It is based on the variation-of-constants formula 36

u(t) = etAu0 +

∫ t

0
e(t−τ)Ag(τ)dτ 37

and the approximation of the integrand by a quadrature rule in nodes τ1, . . . ,τp. This 38

yields p+ 1 independent matrix exponentials 39

etAu0 and e(t−τ j)Ag(τ j) for j = 1, . . . , p, 40

each of which may be approximated efficiently by a Krylov method (see the discus- 41

sion in Sect. 3). However, exponential quadrature is impractical if the source term 42

g(t) is stiff enough so that too many quadrature nodes are needed. 43

To overcome the problems mentioned above, we propose in Sect. 2 a decom- 44

position of (1) into subproblems on overlapping time intervals. These subproblems 45

are decoupled and can be assigned to independent processors. Our method requires 46

almost no communication or synchronization between the processors, except a sum- 47

mation step at the end of the algorithm. Another advantage of our method is its 48

ease of implementation; any available serial integrator for (1) can be used in black- 49

box fashion. Because the efficiency of our method relies on the fast integration of 50

homogeneous linear initial-value problems, Sect. 3 contains a brief discussion of the 51

Arnoldi method for computing the matrix exponential function. In Sect. 4 we discuss 52

the error control and parallel efficiency of our method. In Sect. 5 we present results 53

of a numerical experiment. 54

2 Overlapping Time-Domain Decomposition 55

On a time grid {Tj = jT/p : j = 0, . . . , p} we decompose (1) into the following 56

subproblems of two types. 57

Type 1 : For j = 1, . . . , p solve 58

v′j(t) = Av j(t)+ g(t), v j(Tj−1) = 0, t ∈ [Tj−1,Tj ], 59

using some serial integrator. 60
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Type 2 : For j = 1, . . . , p solve 61

w′j(t) = Awj(t), wj(Tj−1) = v j−1(Tj−1), t ∈ [Tj−1,T ], 62

using exponential propagation (we set v0(T0) := u0). 63

Note that the p subproblems of Type 1 are completely decoupled due to the 64

homogeneous initial values. The same is true for each subproblem of Type 2, the 65

exact solution of which can be computed as 66

wj(t) = e(t−Tj−1)Av j−1(Tj−1) (2)

as soon as the initial value v j−1(Tj−1) is available. Therefore it is natural to assign the 67

integrations for v j−1 and wj to the same processor so that there is no need for com- 68

munication and synchronization between the two types of subproblems. Note that the 69

time intervals [Tj−1,T ] for the wj are overlapping (see also Fig. 1). By superposition, 70

the solution of (1) is 71

u(t) = vk(t)+
k

∑
j=1

wj(t) with k such that t ∈ [Tk−1,Tk]. 72

Only the computation of this sum requires communication between the processors. 73

Our parallel algorithm is given by simultaneously integrating the subproblems of 74

Type 1 and Type 2, and finally forming the sum for u(t) at the required time points t. 75

Fig. 1. Time-domain decomposition of an initial-value problem into inhomogeneous subprob-
lems with zero initial value (Type 1, solid red curves) and overlapping homogeneous subprob-
lems (Type 2, dashed blue curves). The solution is obtained as the sum of all curves

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

3 Computing the Matrix Exponential 76

The overlapping propagation of the linear homogeneous subproblems of Type 2 is 77

clearly redundant. To obtain an efficient parallel method, we require that the com- 78

putation of the matrix exponentials in (2) is fast compared to the integration of the 79

subproblems of Type 1. 80
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For scalar problems (N = 1) the computation of the exponential is a trivial task. 81

For computing the exponential of small to medium-sized dense matrices (N � 500) 82

there are various methods available, see the review [5] and the monograph [4]. 83

The computations become more challenging when the problem size N gets large, 84

in which case the matrix A should be sparse. Then one has to make use of the 85

fact that not the matrix exponential exp(tA) itself is required, but only the prod- 86

uct exp(tA)v0 with a vector v0, by using a polynomial or rational Krylov method 87

(see [3] and the references therein). For brevity we will only describe a variant of 88

the restricted-denominator Arnoldi method described in [6] (see also [9]), which 89

extracts an approximation fn(t) ≈ exp(tA)v0 from a Krylov space built with the 90

matrix S = (I−A/σ)−1A, 91

Kn(S,v0) = span{v0,Sv0, . . . ,S
n−1v0}, 92

the choice of the parameter σ ∈ (R∪{∞}) \ (Λ(A)∪{0}) being dependent on the 93

spectral properties of A. For σ = ∞ we obtain a standard Krylov space with the ma- 94

trix A, i.e., Kn(S,v0) = Kn(A,v0). If Kn(S,v0) is of full dimension n, as we assume 95

in the following, we can compute an orthonormal basis Vn = [v1,v2, . . . ,vn] by using 96

the well-known Arnoldi orthogonalization process (see, e.g., [2, Sect. 9.3.5]). The 97

Arnoldi approximation of exp(tA)v0 is then defined as 98

fn(t) :=Vn exp(t (S−1
n + In/σ)−1)V ∗n v0, Sn :=V ∗n SVn. 99

Provided that n is small, the computation of fn(t) requires the evaluation of a n× n 100

matrix function which is small compared to the original N×N matrix exponential. 101

Moreover, the matrix Sn can be constructed without explicit projection from quanti- 102

ties computed in the Arnoldi process. 103

In Fig. 2 we show the error norm ‖exp(A)v0− fn(1)‖2 of the Arnoldi approxi- 104

mations with parameters σ = ∞ and σ = 40 (a rather arbitrary choice) as a function 105

of n, for the matrices 106

A1 = tridiag(30,−40,10)∈ R
199×199, A2 = tridiag(60,−90,30)∈R

299×299
107

arising from the finite-difference discretization of the same 1D advection–diffusion 108

problem, and a random vector v0. We have also plotted the error of orthogonal pro- 109

jection of the exact solution onto the space Kn(S,v0), namely VnV ∗n eAv0, and observe 110

that the Arnoldi method is capable of extracting an approximation nearby this projec- 111

tion. For comparison we show the error of the result produced by n steps of various 112

explicit and implicit integrators for the initial-value problem v′ = Av, v(0) = v0, inte- 113

grated to t = 1. For this linear homogeneous problem all integrators actually compute 114

approximations from some Krylov space Kn(S,v0) (for the explicit integrators with 115

shift σ =∞ and for implicit Euler with σ = n), but the Arnoldi methods extract much 116

better approximations in the same number of iterations. Note also that the Arnoldi 117

method with finite shift σ = 40 converges almost independently of the problem size 118

N, a property often referred to as mesh-independence. 119

Because the error of Arnoldi approximations decays usually very fast (i.e., 120

‖etAv0− fn+1(t)‖ is considerably smaller than ‖etAv0− fn(t)‖), it is often sufficient 121
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to use the difference of two consecutive iterates as an estimate for the approximation 122

error: 123

‖etAv0− fn(t)‖ ≤ ‖etAv0− fn+1(t)‖+ ‖ fn+1(t)− fn(t)‖
≈ ‖ fn+1(t)− fn(t)‖. (3)
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Fig. 2. Error (2-norm) of various time-stepping methods and Krylov methods for a linear
homogeneous advection–diffusion problem v′ = Av, v(0) = v0, of size N = 199 (left) and
N = 299 (right) as a function of time steps or Krylov space dimension n, respectively
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4 Error Control and Parallel Efficiency 124

Many ODE solvers, for example those of MATLAB, use an error control criterion like 125

‖e(t)‖∞ ≤max{reltol · ‖ũ(t)‖∞,abstol}, t ∈ [0,T ], 126

where e(t) = u(t)− ũ(t) is the (estimated) error of the computed solution ũ(t). 127

Because the inhomogeneous subproblems of Type 1 for v j(t) are solved with zero 128

initial guess, it is not advisable to use an error criterion which is relative to the norm 129

of the solution. Hence we assume that all of these subproblems are solved with an 130

absolute error ‖e j(t)‖∞ ≤ abstol/p over the time interval [Tj−1,Tj]. This error is 131

then propagated exponentially over the remaining interval [Tj,T ], hence we have to 132

study the transient behavior of 133

‖etAe j(Tj)‖∞ ≤ ‖etA‖∞abstol/p (4)

for t ∈ [0,T −Tj]. It is well known that for a stable matrix A (i.e., all eigenvalues lie 134

in the left complex half-plane) the limit limt→∞ ‖etA‖∞ is finite. Unfortunately, the 135
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norm may initially grow arbitrarily large before convergence sets in, a phenomenon 136

usually referred to as hump (see [5]). However, for a diagonally dominant matrix 137

A = (ai j) with aii ≤ 0 this cannot happen, as one can show as follows (cf. [7]): 138

Define ρ = maxi{aii+∑ j �=i |ai j|} ≤ 0. By the formula exp(tA) = limk→∞(I+ tA/k)k
139

we have ‖etA‖∞ ≤ limk→∞ ‖I+ tA/k‖k
∞. For k sufficiently large we have 140

‖I+ tA/k‖∞ = max
i

{
1+ t

(
aii +∑

j �=i

|ai j|
)
/k
}
= 1+ tρ/k, 141

hence 142

‖etA‖∞ ≤ lim
k→∞

(1+ tρ/k)k = etρ ≤ 1 for all t ≥ 0. 143

Of course, it is possible to estimate the behavior of ‖etA‖ for general matrices and in 144

other norms (see, e.g., [10]), but for brevity we will only consider a diagonally dom- 145

inant A. In this case the errors e j(t) of the subproblem solutions v j(t) ( j = 1, . . . , p) 146

are non-increasing when being exponentially propagated, and if we assume that 147

the subproblems of Type 2 are solved exactly (or with sufficiently high accuracy), 148

then the overall error e(t) is bounded1 by the sum of subproblem errors (4), hence 149

‖e(t)‖∞ ≤ abstol. If the integrator is a time-stepping method of order q, it is rea- 150

sonable to assume that the computation time for one subproblem of Type 1 is at 151

most τ1(p) = (τ0 · p1/q)/p, where τ0 is the computation time for serial integration 152

over [0,T ]. If each subproblem of Type 2 takes at most τ2 units of computation time, 153

the expected efficiency of our parallel algorithm is at least 154

efficiency =
speedup

p
=

1
p
· τ0

τ1(p)+ τ2
=

(
p1/q +

p · τ2

τ0

)−1

. (5)

The efficiency becomes large if the serial computation time τ0 is long compared to 155

p · τ2, and if the integration order q is high. 156

5 Numerical Example 157

As a simple model problem we consider the 1D heat equation 158

∂tu(t,x) = α ∂xxu(t,x)+ g(t,x) on x ∈ (0,1),

u(t,0) = u(t,1) = 0,

u(0,x) = u0(x) = 4x(1− x),

g(t,x) = emax{1−|c− x|/d,0}, where c = .5+(.5−d)sin(2π f t).

The source term g(t,x) is a hat function centered at c with half-width d = 0.05 and 159

height e = 100 ·α1/2, oscillating with frequency f . Finite-difference discretization 160

1 This worst-case bound is sharp only if all errors e j are collinear, which is rather unlikely.
Probabilistic error estimation would give ‖e(t)‖∞ � abstol/

√
p. This explains why the

observed parallel efficiency of our algorithm is usually better than predicted by (5). We
plan to investigate this in a sequel.
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at N = 100 points x j = j/(N + 1) ( j = 1, . . . ,N) yields an initial-value problem (1), 161

where A = α(N + 1)2 tridiag(1,−2,1) ∈ R
N×N . This problem is integrated over the 162

time interval [0,T = 1]. For the serial integration we have used the classical Runge– 163

Kutta method of order q = 4 (implemented in MATLAB) with constant step size 164

h0 = min{5 ·10−5/α,10−2/ f}, 165

chosen to avoid instability of the time-stepping method caused by the stiff linear 166

term Au(t) and to capture the oscillations of g(t). As shown in Table 1, the absolute 167

error (∞-norm) is at most 5 · 10−4 for all diffusion coefficients α = 0.01,0.1,1 and 168

frequencies f = 1,10,100. These parameters determine the stiffness of Au(t) and 169

g(t), respectively. We have also tabulated the serial integration times τ0. As expected, 170

these are roughly proportional to h−1
0 . 171

For our parallel algorithm we have partitioned the interval [0,T ] in p = 4 subin- 172

tervals, and computed the solution u(t) at all time points Tj = jT/p ( j = 1, . . . , p). 173

The subproblems of Type 1 are integrated with step size h1 = h0/
√

p1/q (based on a 174

probabilistic error assumption, see the footnote on p. 6). In Table 1 we list the maxi- 175

mal computation time τ1 for all subproblems of Type 1 among all processors. 176

For the subproblems of Type 2 we have used the Arnoldi method described in 177

Sect. 3 with shift σ = 5.3, in combination with the ∞-norm error estimate (3) for an 178

accuracy of 10−4 (for more details on the selection of σ we refer to [9]). In Table 1 179

we list the maximal computation time τ2 for all subproblems of Type 2 among all 180

processors. 181

The errors of the final solutions computed with our parallel algorithm are shown 182

in the second-last column, and they are all below the errors obtained by sequential 183

integration. This indicates that our choice for the step size h1 is reasonable. The par- 184

allel efficiency of our algorithm is above 50 % for all nine tests, and it increases with 185

frequency f because smaller time steps are required to integrate the inhomogene- 186

ity accurately. We finally note that for large-scale computations our algorithm could 187

also be used to further speed up a saturated space parallelization (e.g., by domain 188

decomposition). 189
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