
Page 409

UN
CO

RR
EC

TE
D

PR
O
O
F

1

Newton-Schwarz Optimised Waveform Relaxation 2

Krylov Accelerators for Nonlinear Reactive Transport 3

Florian Haeberlein1,2, Laurence Halpern2, and Anthony Michel1 4

1 IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France, 5

firstname.lastname@ifpen.fr 6
2 Université Paris 13, CNRS, UMR 7539 LAGA, 99 av. Jean-Baptiste Clément, 93430 7

Villetaneuse, France, lastname@math.univ-paris13.fr 8

1 Introduction 9

Krylov-type methods are widely used in order to accelerate the convergence of 10

Schwarz-type methods in the linear case. Authors in [2] have shown that they ac- 11

celerate without overhead cost the convergence speed of Schwarz methods for dif- 12

ferent types of transmission conditions. In the nonlinear context, the well-known 13

class of Newton-Krylov-Schwarz methods (cf. [5]) for steady-state problems or time- 14

dependent problems uses the following strategy: time-dependent problems are dis- 15

cretised uniformly in time first and then one proceeds as for steady-state problems, 16

i.e. the nonlinear problem is solved by a Newton method where the linear system 17

at each iteration is solved by a Krylov-type method preconditioned by an algebraic 18

Schwarz method. The major limitation is that NKS methods do not allow different 19

time discretisations in the subdomains since the problem is discretised in time uni- 20

formly up from the beginning. 21

In this work, we are interested in applying the well-established technique from 22

the linear case in the context of Schwarz Waveform Relaxation methods (SWR, cf. 23

[8]) to nonlinear time-dependent problems in order to benefit from its accelerating 24

properties. We emphasise the use of SWR methods since within this approach, it is 25

possible to use different discretisations in time and space in the subdomains, even the 26

coupling of different models is possible. In many applications, time step restrictions 27

in implicit approaches are highly localised in space due to heterogeneity and SWR 28

methods are perfectly suited to localise and isolate them in subdomains which are 29

treated with different time discretisations. 30

Our motivation of balancing time step restrictions in the time-dependent nonlin- 31

ear case on subdomains is close to the approach in [6, 11] where the balancing of 32

nonlinearities on subdomains in the steady-state case is achieved using the permuta- 33

tion of domain decomposition methods and Newton’s method in combination with 34

Krylov accelerators. 35

The paper is organised as follows: In Sect. 2 we set up the problem to solve. 36

In Sect. 3 we describe the Schwarz waveform relaxation (SWR) algorithm and the 37
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reduction to the interface variables. The new approach is described in Sect. 4. Nu- 38

merical issues and results are given in Sect. 5. 39

2 Problem Description 40

In this paper we consider the following model in Ω × (0,T ), Ω ⊂ R
d : 41

∂t(φw)+L w+F (w) = q in Ω × (0,T), (1)

w(·,0) = w0 in Ω , G w = g on ∂Ω × (0,T ). (2)

where φ(x)> 0 is the porosity, w∈Rs the vector containing the concentrations of the 42

s chemical species. L [·] = ∇ ·(−a∇+b) is a linear operator which models diffusion 43

described by a positive scalar diffusion coefficient a > 0 and advection described by 44

a Darcy field b ∈ R
d . The transport operator can be zero for non-mobile species. F 45

is a nonlinear chemical coupling operator. We impose initial conditions on Ω given 46

by w0 and linear boundary conditions represented by G , for instance Neumann or 47

Dirichlet conditions. The data g and q are source terms depending on space and time. 48

3 The Schwarz Waveform Relaxation Algorithm 49

and the Classical Approach 50

We decompose the domain Ω into two non-overlapping domains Ω1 and Ω2 and 51

call the common boundary Γ = ∂Ω1 ∩ ∂Ω2 the interface between the subdomains. 52

We introduce the following SWR algorithm with Robin transmission conditions to 53

approximate the solution of (1): given the iterate wk−1
i which is equal to an initial 54

guess for the first iteration, then one step of the algorithm consists in computing 55

in parallel wk
i for subdomains Ωi = 1,2, with data coming from the neighbouring 56

subdomain Ω×, with 1̃ = 2 and 2̃ = 1. 57

∂t(φwk
i )+L wk

i +F (wk
i ) = q in Ωi× (0,T ), (3)

(∂ni + p)wk
i = (∂ni + p)wk−1

× on Γ × (0,T ), (4)

wk
i (·,0) = w0 in Ωi, G wk

i = g on ∂Ωi \Γ × (0,T ), (5)

with ni the unit outward normal of Ωi on Γ and p ∈ R, p > 0 a constant. 58

It is possible to reduce algorithm (3)–(5) to the so-called interface variables. De- 59

fine the operators Mi : (λ i, f ) �→ wi solution of 60

∂t(φwi)+L wi +F (wi) = q in Ωi× (0,T ), (6)

(∂ni + p)wi = λi on Γ × (0,T ), (7)

wk
i (·,0) = w0 in Ωi, G wk

i = g on ∂Ωi \Γ × (0,T ). (8)

Here f = (q,w0,g) represents all source terms except the ones on the interface Γ that 61

are represented separately by λi. With these definitions, the transmission conditions 62

(4) can be written as λ k+1
i =−λ k×+ 2pM×(λ k×, f ), and as a system 63
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(
λ k

1
λ k

2

)
=

(−λ k−1
2 + 2pM2(λ k−1

2 , f )
−λ k−1

1 + 2pM1(λ k−1
1 , f )

)
. (9)

The SWR algorithm (3) is therefore a fixed point algorithm for the nonlinear 64

interface problem 65(
λ1

λ2

)
=

(−λ2 + 2pM2(λ2, f )
−λ1 + 2pM1(λ1, f )

)
. (10)

Each iterate requires solving the nonlinear problem (6)–(8). This can be achievedAQ1 66

by a Newton method, or a semi-implicit discretisation in time. The latter method 67

has been implemented in [4] for the advection diffusion reaction equation, where the 68

convergence of the fixed point algorithm has been proved. The extension of the proof 69

to the system (1) should be easy. 70

4 Newton-Schwarz Optimised Waveform Relaxation 71

The new approach consists first in solving the system (10) by a Newton algorithm. If 72

the interface problem is well-posed, and if the initial data for Newton is sufficiently 73

closed to the solution, the algorithm converges to that solution. According to the 74

interface problem (10), we seek the zeros of the nonlinear function 75

Θ(λ ) :=−(λ1 +λ2)

(
1
1

)
+ 2pϒ (λ ), ϒ (λ ) :=

(
M2(λ2, f )
M1(λ1, f )

)
.

One step k− 1 → k of Newton’s algorithm consists in solving the linear system 76

Θ ′(λ k−1) · (λ k − λ k−1) = −Θ(λ k−1). To evaluate the derivative of Θ , we must 77

calculate the derivative of the functions λi �→ Mi(λi, f ). If wi = Mi(λi, f ) and 78

Wi = Mi(λi + λ̃i, f ), we see by subtracting equations (6) for wi and Wi, that Wi−wi 79

is solution of 80

∂t(φ(Wi−wi))+L (Wi−wi)+F (Wi)−F (wi) = 0. 81

Introducing the derivative of F , F (Wi)−F (wi) = F ′(wi)(Wi −wi) +O((Wi − 82

wi)
2), and therefore Wi−wi = w̃i+o(w̃2

i ), where w̃i is solution of the linear equation 83

∂t(φ w̃i)+L w̃i +F ′(wi)w̃i = 0. (11)

(∂ni + p)w̃i = λ̃i (12)

w̃i(x,0) = 0 in Ωi, G w̃i = 0 on ∂Ωi \Γ × (0,T). (13)

Therefore ∂λi
Mi(λi, f ) · λ̃i = w̃i := M lin(F ′(wi); λ̃i), and 84

Θ ′(λ ) · λ̃ =−(λ̃1 + λ̃2)

(
1
1

)
+ 2p

(
M lin(F ′(w2); λ̃2)

M lin(F ′(w1); λ̃1)

)
.

After these computations, the algorithm takes the form 85
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wk−1
i = Mi(λ k−1

i , f ),

−
2

∑
i=1

(λ k
i −λ k−1

i )

(
1
1

)
+ 2p

(
M lin

2 (F ′(wk−1
2 );λ k

2 −λ k−1
2 )

M lin
1 (F ′(wk−1

1 );λ k
1 −λ k−1

1 )

)
=

−
2

∑
i=1

λ k
i

(
1
1

)
+ 2p

(
M2(λ k−1

2 , f )
M1(λ k−1

1 , f )

)
(14)

The approach requires in every iteration to solve two nonlinear problems in the 86

subdomains. Therefore, a nested iterative procedure is necessary (Newton, or semi- 87

implicit time stepping). Once this is done, λ n+1−λ n is a solution of a linear problem 88

solved in parallel in the subdomains. 89

5 Implementation Using Newton-Krylov Methods 90

and Numerical Results 91

We have implemented both the classical and the new approach for a special case 92

of problem (1). We assume that s = 2 and w = (u,v) where u denotes a mobile 93

species and v denotes a fixed species. The nonlinear function F is given by F (w) = 94

(R(u,v),−R(u,v)) where R(u,v) is the overall reaction rate of the reversible reaction 95

u � v. 96

For the computation of Mi(λ k−1
i , f ), we use an implicit Euler scheme in time 97

and a hybrid finite volume scheme (based on [7]) in space. The nonlinear systems 98

are then treated with a global implicit approach by means of Newton’s method with 99

exact LU-decomposition. The linear interface problems (14) for λ k
i are solved using 100

GMRES as Krylov-type method with a precision strategy in the spirit of inexact 101

Newton methods: we adapt the precision of the linear solver with respect to the 102

residuals of the Newton iterates and save therefore costly subdomain evaluations. 103

Concerning the stopping criterion for the Newton-Schwarz optimised algorithm, 104

it is classically controlled by both the residual and the correction (Δλ ) norm. The 105

Schwarz optimised algorithm is only controlled by the correction norm. 106

For all tests, we set the simulation domain to Ω = [0, 1]× [0, 1] ⊂ R
2 with 107

the subdomains Ω1 = [0, 0.5]× [0, 1] and Ω2 = [0.5, 1]× [0, 1]. The time win- 108

dow considered is t ∈ [0, 1]. Physical parameters are φ = 1, a = 1.5, (bx, by) = 109

(5 ·10−2, 1 ·10−3). The nonlinear coupling term is defined by R(u,v) = k(v−Ψ(u)) 110

where the function Ψ is a BET isotherm law defined by 111

Ψ(u) =
QsKLu

(1+KLu−KSu)(1−KSu)
.

BET theory is a rule for the physical adsorption of gas molecules on a solid surface 112

and serves as the basis for an important analysis technique for the measurement of 113

the specific surface area of a material (cf. [3]). This law is insofar mathematically 114

interesting as it is neither convex nor concave (cf. Fig. 1) and is therefore a challeng- 115

ing problem for standard nonlinear solvers like Newton’s method. We set k = 100, 116



Page 413

UN
CO

RR
EC

TE
D

PR
O
O
F

Domain Decomposition for Nonlinear Reactive Transport

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

u

Ψ
(u

)

Fig. 1. BET Isotherm law function Ψ with QS = 2, KS = 0.7, KL = 100
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QS = 2, KS = 0.7 and KL = 100. Initial values are set to (u0,v0) = ( 1
2 ,

1
3 ). By defin- 117

ing the function g(x,y, t) = (sin(πx)cos(πy)cos(2πt)+ cos(πx)sin(πy)cos(2πt)+ 118

cos(πx)cos(πy)sin(2πt)+ 1)/2 we impose Dirichlet boundary conditions with val- 119

ues set to u(x,y, t) = g(x,y, t) for (x,y) ∈ ∂Ω . 120

As a first experiment, we are interested in the sensitivity of the new approach with 121

respect to the parameter p of the Robin transmission condition. Indeed the theory of 122

optimised Schwarz waveform relaxation for linear problem relies on the fact that the 123

convergence properties of the algorithm heavily depend on this parameter. A best 124

parameter for the advection diffusion reaction equation can be found analytically by 125

solving a best approximation problem, see [1, 8]. No such analysis is available for 126

the nonlinear problem, it is therefore interesting to study the issue numerically. 127

We discretise the numerical domain with Δx=Δy= 1/40 and Δ t = 1/10 and im- 128

pose a random initial guess on the interface for the first iteration. As both subdomains 129

are the same size, the number of overall matrix inversions is a meaningful criterion 130

for measuring the numerical performance. We run the two approaches for different 131

parameters p of the Robin transmission condition and plot in Fig. 2 (left) the num- 132

ber of matrix inversions as a function of the parameter p in the Robin transmission 133

condition. One observes first that the performance of the classical approach depends 134

highly on the parameter p of the Robin transmission condition, as in the linear case. 135

The best parameter is p∗ ≈ 40. We observe that the new approach also shows the best 136

performance at p∗ but is much less sensitive to the choice of the parameter. The loss 137

of sensitivity with respect to the parameter is still an open question. 138

It turns out that the new method has a cost overhead, that becomes non negli- 139

gible if space discretisations are chosen too coarse. For this reason, we study the 140

asymptotic behaviour of the two approaches using always the optimal parameter of 141

the classical approach. We refine the problem in space using always Δx = Δy. Note 142

that we keep the time step constant at Δ t = 0.1. Refining the discretisation also in 143

time would lead to a problem that is quasi stationary at every time step since we use a 144

global implicit approach. We measure again the overall number of matrix inversions 145

in the two approaches and plot them in Fig. 2 (right) versus the discretisation size. 146

One observes that the overhead cost of the new approach compared to the classical 147

approach becomes negligible starting at a discretisation with about 150 grid points 148
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per dimension for the new method. For problems finer than the respective thresholds, 149

the new approach is always faster than the classical approach with the best parameter 150

for the transmission condition. Moreover, the finer the discretisation, the larger the 151

problem, the more important the accelerating property of the new approach. Note that 152

the new approaches has a slope of O(N1/7) in the asymptotic behaviour which is con- 153

siderably less than the slope of the classical approach which behaves like O(N1/2.75). 154

The slopes have been determined graphically, no theoretical justification is available. 155

However, this plot shows that the method is much less dependent of the size of the 156

problems than the classical one. 157

In order to exemplify the accelerating property of the new approach, we perform a 158

simulation with Nx = Ny = 200 points in each dimension keeping the number of time 159

steps constant and compare the convergence behaviour of the stopping criteria of the 160

two methods. In Fig. 3 we plot the convergence criterion versus the number of matrix 161

inversions. Note that, for a better comparison, we set the residual norm of the nonlin- 162

ear interface problem evaluated at the initial guess for both methods at zero matrix 163

inversions. The classical approach exhibit a linear convergence followed by a super- 164

linear convergence, similar to the behaviour of the linear algorithm. We observe the 165

quadratic convergence of the new approach, the characteristic feature of the Newton 166

algorithm. 167
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Fig. 2. Number of matrix inversions for the classical approach and new approach, synthetic test
case. Left: Varying parameter p of the Robin transmission conditions with fixed discretisation
in space and time. Right: Varying the number of discrete points per dimension (Nx=Ny) with
fixed discretisation in time and optimal parameter for the Robin transmission condition
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Finally, we want to apply the new approach to a benchmark test case in the con- 168

text of CO2 geological storage. The 3D test case is based on the benchmark for 169

the SHPCO2 project (Simulation haute performance pour le stockage géologique 170

du CO2) which is described in [10]. The global domain is set to Ω = [0, 4,750]× 171

[0, 3,000]× [−1,100,−1,000]with (38, 24, 8) grid cells in (x, y, z)-direction. The do- 172

main is decomposed into the two nonoverlapping subdomains Ω1 = [1,000, 2,500]× 173

[0, 3,000]× [−1,050,−1,000] and Ω2 = Ω \Ω1. We call Ω1 the reactive subdomain 174

since in this subdomain an injection of the mobile species u is modelled by a source 175

term. The initial state is zero for the mobile and immobile species. We consider 176
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Fig. 3. Convergence history with 200 points
per space dimension for the classical ap-
proach and new approach, synthetic test case
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again the BET isotherm law as nonlinear coupling term. The injected mobile species 177

is partially adsorbed by the reaction and partially transported by mainly advection. 178

Simulation time is [0, 100]. The SWR approach allows us to use different discretisa- 179

tions in the subdomains. We choose to use ten time steps in the reactive subdomain 180

Ω1 and only five time steps in the subdomain Ω2. This choice is insofar justified 181

since the rapid injection in the reactive subdomain restricts the time step size by im- 182

posing a maximum number of Newton iterates of ten. As in the subdomain Ω2, the 183

mobile species appears only by transport processes on a slower time scale than the 184

injection, one can choose a larger time step in order to respect the maximum number 185

of Newton iterations. Concerning the parameter of the Robin transmission condition, 186

we use a low frequency approximation of the optimal parameter. The initial guess on 187

the interface is zero for both subdomain interfaces. In Fig. 4 we plot the convergence 188

histogram, i.e. the stopping criterion in a logarithmic scale versus the CPU time (nor- 189

malised to the CPU time of the classical approach). Note that both subdomains have 190

a different size of unknowns and therefore the number of matrix inversions, as used 191

in the previous examples, is no longer a valid tool to measure the effort. One ob- 192

serves that the new approach needs only about 20 % of the CPU time of the classical 193

approach. 194

6 Conclusion 195

Based on a nonlinear coupled reactive transport system we have developed a new 196

approach for solving the interface problem in the nonlinear case using Krylov- 197

accelerators. In contrast to NKS methods the use of SWR methods allows us to use 198

different time discretisations in the subdomains and so to localise time stepping con- 199

straints. We have implemented and tested the method, comparative results with the 200

classical approach have been provided. 201

The numerical tests showed that, besides an overhead cost for coarse space dis- 202

cretisations, the method has an accelerating property and shows much less sensitiv- 203

ity with respect to the choice of the parameter of the Robin condition. The quadratic 204
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convergence behaviour of the new approach outperforms the superlinear convergence 205

behaviour of the classical approach. Nevertheless, the new approach does have sig- 206

nificant overhead costs that are not negligible in the case of coarse problems. Note 207

that a third approach is possible, namely to start with a Newton algorithm for the 208

nonlinear problem, and to solve the so obtained linear problem by a Schwarz-Krylov 209

algorithm (cf. [9]). 210
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