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1 Introduction 13

In this article we study adaptive finite element methods (AFEM) with inexact solvers 14

for a class of semilinear elliptic interface problems. We are particularly interested in 15

nonlinear problems with discontinuous diffusion coefficients, such as the nonlinear 16

Poisson-Boltzmann equation and its regularizations. The algorithm we study con- 17

sists of the standard SOLVE-ESTIMATE-MARK-REFINE procedure common to 18

many adaptive finite element algorithms, but where the SOLVE step involves only a 19

full solve on the coarsest level, and the remaining levels involve only single Newton 20

updates to the previous approximate solution. We summarize a recently developed 21

AFEM convergence theory for inexact solvers appearing in [3], and present a se- 22

quence of numerical experiments that give evidence that the theory does in fact pre- 23

dict the contraction properties of AFEM with inexact solvers. The various routines 24

used are all designed to maintain a linear-time computational complexity. 25

An outline of the paper is as follows. In Sect. 2, we give a brief overview of the 26

Poisson-Boltzmann equation. In Sect. 3, we describe AFEM algorithms, and intro- 27

duce a variation involving inexact solvers. In Sect. 4, we give a sequence of numerical 28

experiments that support the theoretical statements on convergence and optimality. 29

Finally, in Sect. 5 we make some final observations. 30

2 Regularized Poisson-Boltzmann Equation 31

We use standard notation for Sobolev spaces. In particular, we denote ‖ · ‖0,G the L2
32

norm on any subset G⊂ R
3, and denote ‖ · ‖1,2,G the H1 norm on G. 33
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Fig. 1. Schematic of a molecular domain
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Let Ω := Ωm∪Γ ∪Ωs be a bounded Lipschitz domain in R
3, which consists of 34

the molecular region Ωm, the solvent region Ωs and their interface Γ := Ω m ∩Ω s 35

(see Fig. 1). Our interest in this paper is to solve the following regularized Poisson- 36

Boltzmann equation in the weak form: find u ∈ H1
g (Ω) := {u ∈ H1(Ω) : u|∂Ω = g} 37

such that 38

a(u,v)+ (b(u),v) = ( f ,v) ∀v ∈H1
0 (Ω), (1)

where a(u,v) =
∫

Ω ε∇u ·∇vdx, (b(u),v) =
∫

Ω κ2 sinh(u)vdx. Here we assume that 39

the diffusion coefficient ε is piecewise positive constant ε|Ωm = εm and ε|Ωs = εs. The 40

modified Debye-Hückel parameter κ2 is also piecewise constant with κ2(x)|Ωm = 0 41

and κ2(x)|Ωs > 0. The equation (1) arises from several regularization schemes (cf. 42

[5, 6]) of the nonlinear Poisson-Boltzmann equation: 43

−∇ · (ε∇u)+κ2 sinhu =
N

∑
i=1

ziδ (xi),

where the right hand side represents N fixed points with charges zi at positions xi, 44

and δ is the Dirac delta distribution. 45

It is easy to verify that the bilinear form in (1) satisfies: 46

c0‖u‖2
1,2 ≤ a(u,u), a(u,v)≤ c1‖u‖1,2‖v‖1,2, ∀u,v ∈ H1

0 (Ω),

where 0 < c0 ≤ c1 < ∞ are constants depending only on ε . These properties imply 47

the norm on H1
0 (Ω) is equivalent to the energy norm ||| · ||| : H1

0 (Ω)→ R, 48

|||u|||2 = a(u,u), c0‖u‖2
1,2 ≤ |||u|||2 ≤ c1‖u‖2

1,2.

Let Th be a shape-regular conforming triangulation of Ω , and let Vg(Th) := {v∈ 49

H1
g (Ω) : v|τ ∈ P1(τ) ∀τ ∈Th} be the standard piecewise linear finite element space 50

defined on Th. For simplicity, we assume that the interface Γ is resolved by Th. Then 51

the finite element approximation of (1) reads: find uh ∈Vg(Th) such that 52

a(uh,v)+ (b(uh),v) = ( f ,v), ∀v ∈V0(Th). (2)
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We close this section with a summary of a priori L∞ bounds for the solution u 53

to (1) and the discrete solution uh to (2), which play a key role in the finite element 54

error analysis of (2) and adaptive algorithms. For interested reader, we refer to [5, 9] 55

for details. 56

Theorem 1. There exist u+,u− ∈ L∞(Ω) such that the solution u of (1) satisfies the 57

following a priori L∞ bounds: 58

u− ≤ u≤ u+, a.e. in Ω . (3)

Moreover, if the triangulation Th satisfies that 59

a(φi,φ j)≤− σ
h2 ∑

ei, j⊂τ
|τ|, for some σ > 0, (4)

for all the adjacent vertices i 
= j with the basis function φi and φ j , then the discrete 60

solution uh of (2) also has the a priori L∞ bound 61

‖uh‖L∞(Ω) ≤C, (5)

where C is a constant independent of h. 62

We note that the mesh condition is generally not needed practically, and in fact can 63

also be avoided in analysis for certain nonlinearites [2]. 64

3 Adaptive FEM with Inexact Solvers 65

Given a discrete solution uh ∈Vg(Th), let us define the residual based error indicator 66

η(uh,τ): 67

η2(uh,τ) = h2
τ‖b(uh)− f‖2

0,τ + ∑
e⊂∂τ

he‖[(ε∇uh) ·ne]‖2
0,e, 68

where [(ε∇uh) · ne] denote the jump of the flux across a face e of τ. For any subset 69

S ⊂ Th, we set η2(uh,S ) := ∑τ∈S η2(uh,τ). By using the a priori L∞ bounds 70

Theorem 1, we can show (cf. [9]) that the error indicator satisfies: 71

|||u−uh|||2 ≤C1η2(uh,T̂h); (6)

and 72

|η(v,τ)−η(w,τ)| ≤C2|||v−w|||ωτ , ∀v,w ∈Vg(Th) (7)

where ωτ = ∪τ ′∈Th,τ̄ ′∩τ̄ 
= /0τ ′ and |||v|||2ωτ =
∫

ωτ ε|∇v|2dx. 73

Given an initial triangulation T0, the standard adaptive finite element method 74

(AFEM) generates a sequence
[
uk,Tk,{η(uk,τ)}τ∈Tk

]
based on the iteration of the 75

form: 76

SOLVE→ ESTIMATE→MARK→ REFINE. 77
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Here the SOLVE subroutine is usually assumed to be exact, namely uk is the exact 78

solution to the nonlinear equation (2); the ESTIMATE routine computes the element- 79

wise residual indicator η(uk,τ); the MARK routine uses standard Dörfler marking 80

(cf. [7]) where Mk ⊂Tk is chosen so that 81

η(uk,Mk)≥ θη(uk,Tk) 82

for some parameter θ ∈ (0,1]; finally, the routine REFINE subdivide the marked 83

elements and possibly some neighboring elements in certain way such that the new 84

triangulation preserves shape-regularity and conformity. 85

During last decade, a lot of theoretical work has been done to show the conver- 86

gence of the AFEM with exact solver (see [11] and the references cited therein for 87

linear PDE case, and [10] for nonlinear PDE case). To the best of the authors knowl- 88

edge, there are only a couple of convergence results of AFEM for symmetric linear 89

elliptic equations (cf. [1, 12]) which take the numerical error into account. To distinct 90

with the exact solver case, we use ûk and T̂k to denote the numerical approximation 91

to (2) and the triangulation obtained from the adaptive refinement using the inexact 92

solutions. 93

Due to the page limitation, we only state the main convergence result of the 94

AFEM with inexact solver for solving (1) below. More detailed analysis and exten- 95

sion are reported in [3]. 96

Theorem 2. Let {T̂k, ûk}k≥0 be the sequence of meshes and approximate solutions 97

computed by the AFEM algorithm. Let u denote the exact solution and uk denote 98

the exact discrete solutions on the meshes T̂k. Then, there exist constants μ > 0, 99

ν ∈ (0,1), γ > 0, and α ∈ (0,1) such that if the inexact solutions satisfy 100

μ |||uk− ûk|||2 + |||uk+1− ûk+1|||2 ≤ νη2(ûk,T̂k) (8)

then 101

|||u−uk+1|||2 + γη2(ûk+1,T̂k+1)≤ α2(|||u−uk|||2 + γη2(ûk,T̂k)). (9)

Consequently, limk→∞ uk = limk→∞ ûk = u. 102

The proof of this theorem is based on the upper bound (6) of the exact solution, 103

the Lipschitz property (7) of the error indicator, Dörfler marking, and the following 104

quasi-orthogonality between the exact solutions: 105

|||u−uk+1|||2 ≤Λ |||u−uk|||2−|||uk+1−uk|||2 (10)

where Λ can be made close to 1 by refinement. For a proof of the inequality (10), see 106

for example [9]. 107

To achieve the optimal computational complexity, we should avoid solving the 108

nonlinear system (2) as much as we could. The two-grid algorithm [13] shows that a 109

nonlinear solver on a coarse grid combined with a Newton update on the fine grid still 110

yield quasi-optimal approximation. Motivated by this idea, we propose the follow- 111

ing AFEM algorithm with inexact solver, which contains only one nonlinear solver 112

on the coarsest grid, and Newton updates on each follow-up steps: In Algorithm 1, 113
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Algorithm 1 :
[
ûk,T̂k,{η(ûk,τ)}τ∈T̂k

]
:= Inexact_AFEM(T0,θ )

1 û0 = u0 := NSOLVE(T0) %Nonlinear solver on initial triangulation
2 for k := 0,1, · · · do
3 {η(ûk,τ)}τ∈T̂k

:= ESTIMATE(ûk,T̂k)

4 Mk := MARK({η(ûk,τ)}τ∈T̂k
,T̂k,θ )

5 T̂k+1 := REFINE(T̂k,Mk)
6 ûk+1 := UPDATE(ûk,T̂k+1) %One-step Newton update
7 end

the NSOLVE routine is used only on the coarsest mesh and is implemented using 114

Newton’s method run to certain convergence tolerance. For the rest of the solutions, 115

a single step of Newton’s method is used to update the previous approximation. That 116

is, UPDATE computes ûk+1 such that 117

a(ûk+1− ûk,φ)+ (b′(ûk)(ûk+1− ûk),φ) = 0 (11)

for every φ ∈V (T̂k+1). We remark that since (11) is only a linear problem, we could 118

use the local multilevel method to solve it in (near) optimal complexity (cf. [4]). 119

Therefore, the overall computational complexity of the Algorithm 1 is nearly opti- 120

mal. 121

We should point out that it is not obvious how to enforce the required approxima- 122

tion property (8) that ûk must satisfy for the theorem. This is examined in more detail 123

in [3]. However, numerical evidence in the following section shows Algorithm 1 is an 124

efficient algorithm, and the results matches the ones from AFEM with exact solver. 125

4 Numerical Experiments 126

In this section we present some numerical experiments to illustrate the result in The- 127

orem 2, implemented with FETK [8]. The software utilizes the standard piecewise- 128

linear finite element space for discretizing (1). Algorithm 1 is implemented with care 129

taken to guarantee that each of the steps runs in linear time relative to the number 130

of vertices in the mesh. The linear solver used is Multigrid preconditioned Conju- 131

gate Gradients. The estimator is computed using a high-order quadrature rule, and, 132

as mentioned above, the marking strategy is Dörfler marking where the estimated 133

errors have been binned to maintain linear complexity while still marking the ele- 134

ments with the largest error. Finally, the refinement is longest edge bisection, with 135

refinement outside of the marked set to maintain conformity of the mesh. 136

We present two sets of results in order to explore the effects of the inexact solver 137

in multiple contexts. For each problem, we present a convergence plot using both 138

inexact and exact solvers (including a reference line of order N−
1
3 ) as well as a 139

representative cut-away of a mesh with around 30,000 vertices. The exact discrete 140

solution is computed using the standard AFEM algorithm where the solution on each 141
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mesh is computed by allowing Newton’s method to continue running to convergence 142

with the tolerance 10−7. For the exact solution, one could choose to start with an 143

arbitrary initial guess, such as the zero solution, or, as we’ve chosen, use the solution 144

computed on the previous mesh. Making this choice can drastically decrease the 145

number of Newton steps needed to achieve convergence. For each problem below, 146

we discuss the amount of time/computation saved using the inexact solver over this 147

exact solver. 148

Note that using the inexact solver modifies not only the solution on a given mesh, 149

but also the sequence of meshes generated, since the algorithm may mark different 150

simplices. However, as shown in the examples below, the inexact solutions still main- 151

tain optimal convergence rates. 152

The first result uses constant coefficients across the entire domain Ω = [0,1]3, an 153

exponential nonlinearity, and a right hand side chosen so that the derivative of the 154

exact solution is large near the origin. The boundary conditions chosen for this prob- 155

lem are homogeneous Dirichlet boundary conditions. Specifically, the exact solution 156

is given by u = u1u2 where 157

u1 = sin(πx)sin(πy)sin(πz) 158

is chosen to satisfy the boundary condition and 159

u2 = 3(x2 + y2 + x2 + 10−4)−1.5. 160

The results can be seen in Fig. 2. 161

For this problem, the number of iterations in Newton’s method by the exact solver 162

varied between 3 and 7, depending on the refinement level. Because all steps of 163

the algorithm are designed to be linear, this suggests that the inexact solver runs 164

at least three times faster for this problem, while still maintaining optimal order of 165

convergence. 166

In order to test the robustness to the addition of jump coefficients, the second 167

result uses the domain Ω = [−1,1]3 and Ωm =
[− 1

4 ,
1
4

]
with constants εs = 80,εm = 168

2,κs = 1, and κm = 0. Homogeneous Neumann conditions are chosen for the bound- 169

ary and the right hand side is simplified to a constant. Because an exact solution is 170

unavailable for this (and the following) problem, the error is computed by compar- 171

ing to a discrete solution on a mesh with around ten times the number of vertices 172

as the finest mesh used in the adaptive algorithm. Figure 3 shows the results for this 173

problem. As can be seen the refinement favors the interface and the inexact and exact 174

solvers perform as expected. 175

Once again, for this problem, the exact solver required between 3 and 9 iterations 176

of Newton’s method to reach convergence, depending on the refinement level. Since 177

the run time is linear is the number of iterations, this result gives a speedup of at least 178

three times using the inexact solver, without causing a loss in convergence rate. 179

5 Conclusion 180

In this article we have studied AFEM with inexact solvers for a class of semilinear 181

elliptic interface problems with discontinuous diffusion coefficients. The algorithm 182
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Fig. 2. Convergence plot and mesh cut-away for the corner singularity problem
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Fig. 3. Convergence plot and mesh cut-away for the Poisson-Boltzmann problem
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we studied consisted of the standard SOLVE-ESTIMATE-MARK-REFINE proce- 183

dure common to many adaptive finite element algorithms, but where the SOLVE step 184

involves only a full solve on the coarsest level, and the remaining levels involve only 185

single Newton updates to the previous approximate solution. Our numerical results 186

indicate that the recently developed AFEM convergence theory for inexact solvers 187

in [3] does predict the actual behavior of the methods and can allow for significant 188

speedup in the approximation of solutions. 189
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