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Summary. We propose a new nonoverlapping domain decomposition preconditioner for 12

the discrete system arising from the edge element discretization of the three-dimensional 13

Maxwell’s equations. This preconditioner uses the simplest coarse edge element space in- 14

duced by the coarse triangulation. We will show that the rate of the PCG convergence with 15

this substructuring preconditioner is quasi-optimal, and is independent of large variations of 16

the coefficients across the local interfaces. 17

1 Introduction 18

When the time-dependent Maxwell’s equations is solved numerically, we need to 19

solve the following curlcurl-system at each time step [4, 6, 8, 12]: 20

curl(αcurlu)+β u = f in Ω (1)

where Ω is assumed to be an open polyhedral domain in R3, and the coefficients 21

α(x) and β (x) are two positive bounded functions in Ω . We shall complement the 22

Eq. (1) with the perfect conductor condition u× n = 0 on ∂Ω , where n is the unit 23

outward normal vector on ∂Ω . 24

Edge finite element methods have been widely applied in the numerical solution 25

of the system (1), see, for example, [5, 6, 8, 11]. Compared to the standard nodal 26

finite element methods, the discrete systems resulting from the edge element dis- 27

cretization are essentially different in nature. The non-overlapping domain decom- 28

position preconditioners have been well developed for the nodal element systems for 29

the standard second order elliptic problems in the past two decades, and proved both 30

numerically and theoretically to perform nearly optimally in terms of the fine mesh 31

size and subdomain size; see, e.g., the monograph [15]. But these preconditioners, 32
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or their natural generalizations turn out to perform mostly very poorly for the edge 33

element systems for the curlcurl-system (1), especially in three dimensions. 34

A lot of important efforts have been made in the construction of effective do- 35

main decomposition methods for the system (1). A substructuring type method was 36

analysed in [16] for two dimensions, and in [2] for three dimensions with two sub- 37

domains. In [7], a novel substructuring type method was proposed for general two- 38

dimensional multiple subdomains with quite irregular boundaries, and it was proved 39

to be nearly optimal in terms of a variety of mesh decompositions and distributions 40

of physical material properties. However, it has been a challenge how to construct an 41

efficient non-overlapping domain decomposition preconditioner for the Maxwell’s 42

equations in three dimensions with general multiple subdomains. A first important 43

attempt to this problem was made in [9] where a wire basket type algorithm was pro- 44

posed and analysed. Then a substructuring preconditioner and a dual-primal FETI 45

algorithm were introduced and fully analysed for three dimensions in [10] and [14], 46

respectively. These three methods have their respective advantages and disadvan- 47

tages: the algorithms in [9] and [14] both involve smaller coarse solvers but they are 48

difficult to implement; the method in [10] is easier to implement but it involves a 49

relatively large coarse solver. 50

This work intends to construct a new substructuring type preconditioner for the 51

three-dimensioanl curlcurl-system (1) for general multiple subdomains. In this pre- 52

conditioner, the coarse space is chosen to be the edge element space induced by 53

the coarse triangulation, so the resulting coarse solver is very cheap and simple to 54

implement. It is shown that the rate of the PCG convergence with this substructur- 55

ing preconditioner is quasi-optimal, and more importantly, independent of the large 56

variations of the coefficients in the system (1) across the local interfaces. 57

2 Domain Decompositions and Discretizations 58

This section introduces the non-overlapping domain decomposition of domain Ω , 59

the weak form of the system (1) and the edge element spaces. 60

2.1 Initial Domain Decomposition Based on the Distribution of the Coefficients 61

We assume that the entire domain Ω is decomposed into N0 open convex polyhedral 62

subdomains D1,D2, · · · ,DN0 such that Ω̄ = ∪N0
r=1D̄r and α(x) and β (x) are positive 63

constants on each subdomain Dr, namely for r = 1,2, . . . ,N0, 64

α(x) = αr, β (x) = βr ∀x ∈ Dr . 65

Clearly such a decomposition is always possible when the domain Ω is occupied by 66

multiple media. In fact, if for some medium we have an irregular nonconvex subre- 67

gion in Ω , we can further split each nonconvex medium subregion into smaller con- 68

vex subdomains. This means that our assumption does cover many practical cases, 69

especially considering the fact that the domain Ω on which we solve the original 70
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Maxwell system (1) by a finite element method is often obtained by approximating 71

the original physical domain by a polyhedral domain. Note that N0 typically is a fixed 72

constant in applications, so diam(Dr) = O(1). 73

Let Fnm denote the common face of two neighboring subdomains Dn and Dm, and 74

set Dnm = Dn∪Dm∪Fnm. For simplicity of the analysis, we assume 75

βr � αr � d−2αr, r = 1, · · · ,N0. (2)

2.2 Domain Decomposition 76

For a number d ∈ (0, 1), let each polyhedron Dl be decomposed into the union 77

of some non-overlapping tetrahedra (or hexahedra) {Ωk} of size d (see [3, 15] and 78

[18]), which results in a non-overlapping domain decomposition for Ω : Ω̄ =
N⋃

k=1
Ω̄k. 79

Naturally we further assume that Ωi∩Ω j = /0 when i �= j; if i �= j and ∂Ωi∩∂Ω j �= /0, 80

∂Ωi∩∂Ω j is a common face (or edge or vertex) of Ωi and Ω j. Now the subdomains 81

Ω1, · · · ,ΩN constitute our desired coarse triangulation Td of Ω . The faces and ver- 82

tices of the subdomains are always denoted by F and V, while the common (open) 83

face of the subdomains Ωi and Ω j are denoted by Γi j, and the union of all such com- 84

mon faces by Γ , i.e., Γ = ∪Γ̄i j. Γ will be called the interface. By Γk we denote the 85

intersection of Γ with the boundary of the subdomain Ωk. So we have Γk = ∂Ωk if 86

Ωk is an interior subdomain of Ω . We shall set Ωi j = Ωi∪Ω j ∪Γi j. 87

2.3 Weak Formulation 88

Let H(curl;Ω) be the Sobolev space consisting of all square integrable functions 89

whose curl’s are also square integrable in Ω , and H0(curl;Ω) be a subspace of 90

H(curl;Ω) of all functions whose tangential components vanish on ∂Ω . Then by 91

writing the scalar product in (L2(Ω))3 as (·, ·), we can state the variational problem 92

for system (1) as follows: 93

Find u ∈ H0(curl;Ω) such that 94

A (u,v) = (f,v), ∀v ∈H0(curl;Ω) (3)

where A (·, ·) is a bilinear form given by 95

A (u,v) = (α curl u,curl v)+ (β u,v), u,v ∈ H(curl;Ω). 96

2.4 Fine Triangulation and Their Associated Finite Element Spaces 97

We further divide each Ωk into smaller tetrahedral elements of size h so that ele- 98

ments from two neighboring subdomains have an intersection which is either empty 99

or a single nodal point or an edge or a face on the interface Γ . Let Th be the resulting 100

triangulation of the domain Ω , which we assume is quasi-uniform. Then we intro- 101

duce the Nédélec edge element space of the lowest order defined on Th (cf. [12] and 102

[13]): 103
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Vh(Ω) =
{

v ∈ H0(curl;Ω); v |K∈ R(K), ∀K ∈ Th

}
, 104

where R(K) is a subset of all linear polynomials on the element K of the form: 105

R(K) =
{

a+b×x; a,b ∈R3, x ∈ K
}
. 106

In an analogous way, we can define the coarse edge element space Vd(Ω) ⊂ Vh(Ω), 107

associated with the coarse triangulation Td . 108

It is well-known that for any v∈Vh(Ω), its tangential components are continuous 109

on all edges of each element in the triangulation Th. Moreover, each edge element 110

function v in Vh(Ω) is uniquely determined by its moments on each edge e of Th: 111

{
λe(v) =

∫
e
v · teds; e ∈ Eh

}
, 112

where Eh denotes the set of the fine edges from the triangulation Th, and te denotes 113

the unit vector on the edge e. 114

By Zh(Ω) we denote the continuous piecewise linear finite element subspace of 115

H1
0 (Ω) associated with the triangulation Th. Similarly, let Zd(Ω) denote the contin- 116

uous piecewise linear finite element subspace of H1
0 (Ω) associated with the triangu- 117

lation Td . 118

2.5 Discrete Variational Problem 119

Using the edge element space Vh(Ω), the system (3) may be approximated as fol- 120

lows: Find uh ∈Vh(Ω) such that 121

(αcurl uh,curl vh)+ (β uh,vh) = (f,vh), ∀vh ∈Vh(Ω). (4)

Define the operator A : Vh(Ω)→Vh(Ω) by 122

(Auh,vh) = (αcurl uh,curl vh)+ (β uh,vh), ∀uh,vh ∈Vh(Ω), 123

Then, (4) can be written in the operator form 124

Auh = fh. (5)

3 A Nearly Optimal Preconditioner for A 125

3.1 Construction of the Preconditioner 126

We first introduce some useful sets and subspaces. 127

Eh: the set of all edges from the triangulations Th; 128

EΓ ,h: the set of edges which belong to Eh and have two endpoints on the interface 129

Γ ; 130

Ed : the set of all (coarse) edges from the triangulations Td ; 131
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WE: the union of all the coarse edges E′ ∈ Ed , which have a common endpoint 132

with the coarse edge E ∈ Ed . And WE is called E-basket. 133

E b
E,h: the set of all (fine) edges which belong to Eh and have at least one endpoint 134

on WE; 135

Let D be either a subdomain Dr or a subdomain Ωk or a subdomain Ωi j or a sub- 136

domain Dmn. The restrictions of Vh(Ω) (resp. Zh(Ω)) on D is denoted by Vh(D) (resp. 137

Zh(D)). The following local subspaces of Vh(D) will be important to our analysis: 138

V 0
h (D) =

{
v ∈Vh(D); v×n = 0 on ∂D

}
, 139

and 140

Z0
h(D) =

{
ϕ ∈ Zh(Ω); supp ϕ ⊂ D

}
. 141

We define subspaces of Vh(Ω): 142

V H
h (Ω) =

{
v ∈Vh(Ω); v is the discrete A-extension of v|∂Ωk

in each Ωk

}
, 143

144

V H
h (Ωi j) =V H

h (Ω)
⋂

V 0
h (Ωi j), 145

and for E ∈ Ed , 146

V E
h (Ω) =

{
v ∈V H

h (Ω); λe(v) = 0 for each e ∈ EΓ ,h\E b
E,h

}
. 147

It is well known that a suitable coarse subspace plays a key role in the construc- 148

tion of an effective domain decomposition preconditioner, and it is generally rather 149

technical and problem-dependent to choose such a coarse subspace. Surprisingly we 150

are going to choose the coarse subspace to be the simplest one, namely the subspace 151

Vd(Ω) induced by the coarse triangluation Td . 152

It is easy to see that the space Vh(Ω) has the (non-direct sum) decomposition 153

Vh(Ω) =Vd(Ω)+
N

∑
k=1

V 0
h (Ωk)+∑

E
V E

h (Ω)+∑
Γi j

V H
h (Ωi j). (6)

Next, we define the corresponding solvers on the subspaces V 0
h (Ωk), V E

h (Ω), 154

V H
h (Ωi j) and Vd(Ω). 155

As usual, we denote the restriction of A on V 0
h (Ωk) by Ak, i.e., 156

(Akv,u)Ωk = (Av,u) = A (v,u), v ∈V 0
h (Ωk), ∀u ∈V 0

h (Ωk). 157

Let Bk : V 0
h (Ωk)→V 0

h (Ωk), Bd : Vd(Ω)→Vd(Ω) and Bi j : V H
h (Ωi j)→V H

h (Ωi j) 158

be the symmetric and positive definite operators such that 159

(Bkv,v)� (Akvk,vk)Ωk , ∀v ∈V 0
h (Ωk), 160

where vk = v|Ωk for k = 1,2, · · · ,N, and 161
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(Bdvd,vd) � A (vd ,vd), ∀vd ∈Vd(Ω),

(Bi jv,v) � A (v,v), ∀v ∈V H
h (Ωi j).

The symbol � above means each of the two quantities involved is bounded by the 162

other up to a constant independent of h, d and functions involved in the two quanti- 163

ties. 164

The local solvers on V E
h (Ω) should be solvable in an efficient manner, and their 165

constructions are much more tricky and technical than the others. To do so, we intro- 166

duce more notation. 167

For any face F from the triangulations Td , we use Fb to denote the union of all 168

Th-induced (closed) triangles on F, which have either one single vertex or one edge 169

lying on ∂ F, and F∂ to denote the open set F\Fb. For any subdomain Ωk, define 170

Δk =
⋃

F⊂Γk

Fb, k = 1, · · · ,N. 171

We will also need the so-called tangential divergence divτ Φ = curlSΦ for Φ ∈ 172

Vh(Γk), which is defined here as in [1, 2]. Then we can introduce our local solver 173

BE : V E
h (Ω)→V E

h (Ω) as follows: 174

(BEv,u) = h[1+ log(d/h)]
N

∑
k=1

{
αk〈divτ(v×n)|Γk ,divτ (u×n)|Γk〉Δk

+ βk〈v×n,u×n〉Δk

}
, v ∈V E

h (Ω), ∀u ∈V E
h (Ω). (7)

For convenience, we call BE an 175

Let Qk : Vh(Ω)→ V 0
h (Ωk), Qd : Vh(Ω)→ Vd(Ω), QE : Vh(Ω)→ V E

h (Ω) and 176

Qi j : Vh(Ω)→ V H
h (Ωi j) be the standard the standard L2-projections. Then we are 177

ready to propose our new preconditioner for A as follows: 178

B−1 = B−1
d Qd +

N

∑
k=1

B−1
k Qk +ω ∑

E
B−1

E QE +∑
Γi j

B−1
i j Qi j, (8)

where ω is a (constant) relaxation parameter, which is introduced to obtain a balance 179

between the local solvers BE and other remaining solvers. 180

3.2 Algorithm Based on the New Preconditioner and Main Results 181

The action of the preconditioner B−1 which is needed in each PCG iteration can be 182

described in the following algorithm. 183

Algorithm 4.1. For g ∈Vh(Ω), we can compute u = B−1g in five steps. 184

Step 1. Solve the system for ud ∈Vd(Ω): 185

(Bdud ,vd) = (g,vd), ∀vd ∈Vd(Ω); 186
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Step 2. Solve the following system for uk ∈V 0
h (Ωk) in each subdomain in paral- 187

lel: 188

(Bkuk,v) = (g,v), ∀v ∈V 0
h (Ωk), k = 1, · · · ,N; 189

Step 3. Solve the following system for ui j ∈ V 0
h (Ωi j) in each subdomain Ωi j in 190

parallel: 191

(Bi jui j,v) = (g,v)− (Aiui,v)Ωi− (A ju j,v)Ω j , ∀v ∈V 0
h (Ωi j); 192

Step 4. Solve the system for uE ∈V E
h (Ω): 193

(BEuE,v) = (g, ṽ)−
N

∑
k=1

(Akuk, ṽ), v ∈V E
h (Ω), 194

where ṽ ∈Vh(Ω) is a natural extension of (v×n)|Γ by zero. 195

Step 5. Set Φh = (∑
Γi j

ui j +∑
E

uE)×n|Γ and compute the A-extension A-extension 196

of Φh on each Ωk to obtain uH ∈V H
h (Ω). This leads to 197

u = ud +
N

∑
k=1

uk +uH . 198

Remark 1. For the local solver Bi j on each face Γi j, we may use the face extended 199

domain formed by, e.g., one half of each of the two neighboring subdomains Ωi 200

and Ω j. Such definition of Bi j’s can reduce the computational complexity in their 201

numerical realization. 202

Let E denote a coarse edge of the subdomain Dr. Define 203

V⊥h (Ω) = {vh : vh ∈Vh(Ω),
∫

E
vh · tEds = 0 for each E}. 204

We shall use κ⊥(B−1A) to denote the induced condition number of the precondi- 205

tioned system B−1A associated with the subspace V⊥h (Ω), namely the condition 206

number of B−1A restricted on the subspace V⊥h (Ω) (cf. [17]). At this moment we 207

are able to establish only the following estimate of the induced condition number. As 208

the estimate is quite lengthy and technical, we cannot include it here due to the page 209

limitation. 210

Theorem 1. Under the assumptions (2), the preconditioner B given in (8) is nearly 211

optimal in the sense that 212

κ⊥(B−1A)≤C[1+ log(d/h)]2[1+ log(1/h)]2 (9)

where the constant C is independent of h, d and the jumps of the coefficients. 213

As we see from the above theorem that the induced condition number grows 214

logarithmically with the degrees of freedom in each subdomain, but also with the 215
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degrees of freedom of the entire fine mesh. We believe this is mainly due to the re- 216

striction of our current analysis technique, namely the estimate must be done for the 217

induced condition number in the subspace V⊥h (Ω) associated with the coarse trian- 218

gulation formed by the material subdomains Dr. We expect the estimate should be 219

finally carried out directly in the entire edge element space Vh(Ω), that will remove 220

the logarithmic factor of 1/h in the estimate (9). This expectation has already been 221

confirmed by our three-dimensional numerical experiments; see the next section. 222

4 Numerical Experiments 223

In this section we shall conduct some numerical experiments to check the conver- 224

gence of the newly proposed preconditioner, and find out whether they are consistent 225

with the prediction of the convergence theory developed in the previous sections. 226

In our experiments, we take the domain to be the unit cube Ω = (0,1)3, while 227

the right-hand side f of the system (1) is selected such that the exact solution u = 228

(u1,u2,u3)
T is given by 229

u1 = xyz(x−1)(y−1)(z−1) ,

u2 = sin(πx)sin(πy)sin(πz) ,

u3 = (1− ex)(1− ex−1)(1− ey)(1− ey−1)(1− ez)(1− ez−1) ,

when the coefficients α(x) and β (x) are both constant 1. This right-hand side f is 230

then fixed in all our experiments, but the coefficients α(x) and β (x) may be taken 231

differently. 232

We then need to triangulate the domain Ω into subdomains {Ωk}. For this, we 233

first partition the three edges of Ω on x-, y- and z-axis into n equal subintervals from 234

which one can naturally generate n3 equal smaller cubes of size d = 1/n. This yields 235

the desired subdomain decomposition in our experiments. 236

Next, we further triangulate each subdomain Ωk to get a fine triangulation Th of 237

size h over the domain Ω . To generate Th, we divide each subdomain into m3 equal 238

smaller cubes of size h = 1/(mn), in the same manner as done in the previous subdo- 239

main generation. Then Th is obtained by triangulating each cube into six tetrahedra. 240

For easy identification, we may denote the triangulation Th as m3(n3) below. 241

The edge finite element space of the lowest order is used for the discretization 242

of (3). The resulting system (5) is solved by PCG method with the newly proposed 243

preconditioners B defined in Sect. 4. We shall choose the balancing parameter ω in 244

front of the E-basket local solvers BE in (8) as ω = 1 or ω = 2.5. 245

We consider various distributions of the coefficients α(x) and β (x) and report 246

the corresponding numbers of PCG iterations, and the condition numbers of B−1A 247

for some representative cases. The PCG iteration is terminated in our experiments 248

when the relative residual is less than 10−6. 249

Case (i): coefficients α(x) = β (x) = 1, with no jumps. The PCG iterations and the 250

condition numbers (in brackets) for ω = 2.5 are listed in Table 1. 251
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tω = 1.0 ω = 2.5
tm \n 4 6 8 10 4 6 8 10
t4 34 33 32 32 31 (34.24) 31 (36.31) 31 (36.94) 30 (37.40)
t8 41 40 39 38 39 (52.15) 38 (53.78) 37 (54.21) 37 (54.61)
t12 48 47 44 42 43 (64.29) 43 (65.91) 41 (66.19) 41 (66.62)
t16 51 50 49 45 47 (74.40) 46 (75.69) 44 (75.82) 44 (76.39)

Table 1. Iterations (and condition numbers) with smooth coefficients

We observe from the above table that the number of PCG iterations grows slowly 252

when m = d/h increases but n = 1/d is fixed, and that these numbers vary stably 253

when m is fixed but n increases. This justifies our early expection that the condition 254

number of the preconditioned system B−1A should grow logarithmically with d/h 255

only, not with 1/h. 256

One important issue we like to draw the readers’ attention to is the large-scale of 257

the discrete system we are solving. For instance, when m = 16 and n = 10, the total 258

number of degrees of freedom for the fine edge element system is about 28,672,000. 259

Case (ii): coefficients α(x) and β (x) have large jumps: 260

α(x) = β (x) = α0 in D; α(x) = β (x) = 1 in Ω\D. 261

where D ⊂ Ω is a union of several subdomains Ωk. We choose α0 = 10−5 or α0 = 262

105, and consider two choices of D, where one does not have cross-points, while the 263

other has one cross-point. 264

Example 1: 265

D = [
1
4
,

1
2
]3 . 266

Example 2: 267

D = [
1
4
,

1
2
]3
⋃
[
1
2
,

3
4
]3. 268

The numerical results are given in Tables 2 and 3, from which we can make some 269

similar observations about the PCG convergence in terms of the mesh and subdomain 270

quantities d/h and d as we did for Case (i). 271

t2.1Example 1 Example 2
t2.2ω = 1.0 ω = 2.5 ω = 1.0 ω = 2.5
t2.3m \n 4 8 4 8 4 8 4 8
t2.44 29 31 26 (32.00) 29 (35.97) 28 30 26 (35.51) 30 (35.97)
t2.58 35 38 32 (44.88) 37 (52.97) 35 38 32 (45.88) 37 (52.59)
t2.612 38 45 36 (56.02) 42 (64.96) 37 45 35 (55.66) 41 (63.81)
t2.716 40 49 37 (64.65) 45 (74.68) 40 49 37 (65.65) 45 (74.31)

Table 2. Iterations (and condition numbers) with α0 = 10−5



Page 82

UN
CO

RR
EC

TE
D

PR
O
O
F

Q.Y. Hu, S. Shu, J. Zou

t3.1Example 1 Example 2
t3.2ω = 1.0 ω = 2.5 ω = 1.0 ω = 2.5
t3.3m \n 4 8 4 8 4 8 4 8
t3.44 42 42 36 (40.47) 36 (42.71) 42 44 38 (40.55) 37 (42.72)
t3.58 49 48 45 (61.08) 44 (62.89) 52 51 46 (60.20) 45 (62.89)
t3.612 55 54 50 (74.04) 49 (76.28) 56 56 50 (76.24) 51 (76.28)
t3.716 59 57 54 (91.51) 52 (86.45) 59 59 53 (83.35) 54 (86.45)

Table 3. Iterations (and condition numbers) with α0 = 105

Case (iii): coefficients α(x) and β (x) have large jumps: 272

α(x) =

⎧⎨
⎩

α0, in D

1, in Ω\D,
β (x) =

⎧⎨
⎩

β0, in D

1, in Ω\D,
273

where D ⊂ Ω is a union of several subdomains Ωk. We choose α0 = 10−5 or α0 = 274

105, but β0 �= α0. We still consider two different regions D from Examples 1 and 2 in 275

the previous Case (ii), but choose the balancing parameter ω in front of the E-basket 276

local solvers BE in (8) as ω = 2.5. 277

The numerical results are given in Tables 4 and 5. Again, we can make simi- 278

lar observations about the PCG convergence in terms of the mesh and subdomain 279

quantities d/h and d as we did for Case (i). 280

t4Example 1 Example 2
t4β0 = α0×102 β0 = α0×10−2 β0 = α0×102 β0 = α0×10−2

t4m \n 4 8 4 8 4 8 4 8
t44 30 36 46 47 30 36 45 47
t48 39 43 56 56 39 45 56 56
t416 49 52 65 65 49 52 63 65

Table 4. Iterations with α0 = 10−5

t5Example 1 Example 2
t5β0 = α0×102 β0 = α0×10−2 β0 = α0×102 β0 = α0×10−2

t5m \n 4 8 4 8 4 8 4 8
t54 31 37 38 41 31 37 39 46
t58 37 47 46 49 37 47 53 58
t516 48 56 55 57 48 56 66 73

Table 5. Iterations with α0 = 105

We may also observe from the previous numerical experiments that appropriate 281

choices of the parameter ω can significantly improve the efficiency of the precon- 282

ditioner B. It is important to see that the choices of ω seem independent of the fine 283
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and coarse meshsizes h and d, so we may determine ω by solving some small scale 284

systems, e.g., a system with m = n = 4. 285
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