A Substructuring Preconditioner for Three-Dimensional Maxwell's Equations

Qiya Hu¹, Shi Shu² and Jun Zou³

- ¹ LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, The Chinese Academy of Sciences, Beijing 100080, China hqy@lsec.cc.ac.cn
- ² School of Mathematics and Computational Science, Xiangtan University, Hunan, 411105, China shushi@xtu.edu.cn
- ³ Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong
 Kong zou@math.cuhk.edu.hk

Summary. We propose a new nonoverlapping domain decomposition preconditioner for 12 the discrete system arising from the edge element discretization of the three-dimensional 13 Maxwell's equations. This preconditioner uses the simplest coarse edge element space in-14 duced by the coarse triangulation. We will show that the rate of the PCG convergence with 15 this substructuring preconditioner is quasi-optimal, and is independent of large variations of 16 the coefficients across the local interfaces. 17

1 Introduction

When the time-dependent Maxwell's equations is solved numerically, we need to 19 solve the following **curlcurl**-system at each time step [4, 6, 8, 12]: 20

$$\operatorname{curl}(\alpha \operatorname{curlu}) + \beta \mathbf{u} = \mathbf{f} \quad \text{in} \quad \Omega$$
 (1)

1

2

З

л

5

6

7

8

q

18

where Ω is assumed to be an open polyhedral domain in \mathbb{R}^3 , and the coefficients ²¹ $\alpha(\mathbf{x})$ and $\beta(\mathbf{x})$ are two positive bounded functions in Ω . We shall complement the ²² Eq. (1) with the perfect conductor condition $\mathbf{u} \times \mathbf{n} = 0$ on $\partial \Omega$, where \mathbf{n} is the unit ²³ outward normal vector on $\partial \Omega$. ²⁴

Edge finite element methods have been widely applied in the numerical solution ²⁵ of the system (1), see, for example, [5, 6, 8, 11]. Compared to the standard nodal ²⁶ finite element methods, the discrete systems resulting from the edge element discretization are essentially different in nature. The non-overlapping domain decomposition preconditioners have been well developed for the nodal element systems for ²⁹ the standard second order elliptic problems in the past two decades, and proved both ³⁰ numerically and theoretically to perform nearly optimally in terms of the fine mesh ³¹ size and subdomain size; see, e.g., the monograph [15]. But these preconditioners, ³²

R. Bank et al. (eds.), *Domain Decomposition Methods in Science and Engineering XX*, Lecture Notes in Computational Science and Engineering 91, DOI 10.1007/978-3-642-35275-1_7, © Springer-Verlag Berlin Heidelberg 2013

or their natural generalizations turn out to perform mostly very poorly for the edge ³³ element systems for the **curlcurl**-system (1), especially in three dimensions. ³⁴

A lot of important efforts have been made in the construction of effective do- 35 main decomposition methods for the system (1). A substructuring type method was 36 analysed in [16] for two dimensions, and in [2] for three dimensions with two sub- 37 domains. In [7], a novel substructuring type method was proposed for general two- 38 dimensional multiple subdomains with quite irregular boundaries, and it was proved 39 to be nearly optimal in terms of a variety of mesh decompositions and distributions 40 of physical material properties. However, it has been a challenge how to construct an 41 efficient non-overlapping domain decomposition preconditioner for the Maxwell's 42 equations in three dimensions with general multiple subdomains. A first important 43 attempt to this problem was made in [9] where a wire basket type algorithm was pro- 44 posed and analysed. Then a substructuring preconditioner and a dual-primal FETI 45 algorithm were introduced and fully analysed for three dimensions in [10] and [14], 46 respectively. These three methods have their respective advantages and disadvan- 47 tages: the algorithms in [9] and [14] both involve smaller coarse solvers but they are 48 difficult to implement; the method in [10] is easier to implement but it involves a 49 relatively large coarse solver. 50

This work intends to construct a new substructuring type preconditioner for the 51 three-dimensioanl **curlcurl**-system (1) for general multiple subdomains. In this pre-52 conditioner, the coarse space is chosen to be the edge element space induced by 53 the coarse triangulation, so the resulting coarse solver is very cheap and simple to 54 implement. It is shown that the rate of the PCG convergence with this substructur-55 ing preconditioner is quasi-optimal, and more importantly, independent of the large 56 variations of the coefficients in the system (1) across the local interfaces. 57

2 Domain Decompositions and Discretizations

This section introduces the non-overlapping domain decomposition of domain Ω , 59 the weak form of the system (1) and the edge element spaces. 60

2.1 Initial Domain Decomposition Based on the Distribution of the Coefficients 61

We assume that the entire domain Ω is decomposed into N_0 open convex polyhedral ⁶² subdomains D_1, D_2, \dots, D_{N_0} such that $\overline{\Omega} = \bigcup_{r=1}^{N_0} \overline{D}_r$ and $\alpha(\mathbf{x})$ and $\beta(\mathbf{x})$ are positive ⁶³ constants on each subdomain D_r , namely for $r = 1, 2, \dots, N_0$, ⁶⁴

$$\alpha(\mathbf{x}) = \alpha_r, \quad \beta(\mathbf{x}) = \beta_r \quad \forall \mathbf{x} \in D_r.$$
 65

58

Clearly such a decomposition is always possible when the domain Ω is occupied by 66 multiple media. In fact, if for some medium we have an irregular nonconvex subregion in Ω , we can further split each nonconvex medium subregion into smaller convex subdomains. This means that our assumption does cover many practical cases, 69 especially considering the fact that the domain Ω on which we solve the original 70 Maxwell system (1) by a finite element method is often obtained by approximating 71 the original physical domain by a polyhedral domain. Note that N_0 typically is a *fixed* 72 constant in applications, so $diam(D_r) = O(1)$. 73

Let F_{nm} denote the common face of two neighboring subdomains D_n and D_m , and 74 set $D_{nm} = D_n \cup D_m \cup F_{nm}$. For simplicity of the analysis, we assume 75

$$eta_r \lesssim lpha_r \lesssim d^{-2} lpha_r, \quad r=1,\cdots,N_0.$$

2.2 Domain Decomposition

For a number $d \in (0, 1)$, let each polyhedron D_l be decomposed into the union 77 of some non-overlapping tetrahedra (or hexahedra) { Ω_k } of size d (see [3, 15] and 78

[18]), which results in a non-overlapping domain decomposition for Ω : $\bar{\Omega} = \bigcup_{k=1}^{N} \bar{\Omega}_{k}$. 79

Naturally we further assume that $\Omega_i \cap \Omega_j = \emptyset$ when $i \neq j$; if $i \neq j$ and $\partial \Omega_i \cap \partial \Omega_j \neq \emptyset$, so $\partial \Omega_i \cap \partial \Omega_j$ is a common face (or edge or vertex) of Ω_i and Ω_j . Now the subdomains si $\Omega_1, \dots, \Omega_N$ constitute our desired *coarse* triangulation \mathcal{T}_d of Ω . The faces and verse tices of the subdomains are always denoted by F and V, while the common (open) so face of the subdomains Ω_i and Ω_j are denoted by Γ_{ij} , and the union of all such common faces by Γ , i.e., $\Gamma = \bigcup \overline{\Gamma}_{ij}$. Γ will be called *the interface*. By Γ_k we denote the soft the subdomain of Ω . We shall set $\Omega_{ij} = \Omega_i \cup \Omega_j \cup \Gamma_{ij}$.

2.3 Weak Formulation

Let $H(\operatorname{curl}; \Omega)$ be the Sobolev space consisting of all square integrable functions ⁸⁹ whose curl's are also square integrable in Ω , and $H_0(\operatorname{curl}; \Omega)$ be a subspace of ⁹⁰ $H(\operatorname{curl}; \Omega)$ of all functions whose tangential components vanish on $\partial \Omega$. Then by ⁹¹ writing the scalar product in $(L^2(\Omega))^3$ as (\cdot, \cdot) , we can state the variational problem ⁹² for system (1) as follows: ⁹³

Find $\mathbf{u} \in H_0(\mathbf{curl}; \Omega)$ such that

$$\mathscr{A}(\mathbf{u},\mathbf{v}) = (\mathbf{f},\mathbf{v}), \quad \forall \mathbf{v} \in H_0(\mathbf{curl};\Omega)$$
(3)

where $\mathscr{A}(\cdot, \cdot)$ is a bilinear form given by

$$\mathscr{A}(\mathbf{u},\mathbf{v}) = (\alpha \text{ curl } \mathbf{u}, \text{curl } \mathbf{v}) + (\beta \mathbf{u}, \mathbf{v}), \quad \mathbf{u}, \mathbf{v} \in H(\text{curl}; \Omega).$$

2.4 Fine Triangulation and Their Associated Finite Element Spaces

We further divide each Ω_k into smaller tetrahedral elements of size h so that elements from two neighboring subdomains have an intersection which is either empty or a single nodal point or an edge or a face on the interface Γ . Let \mathscr{T}_h be the resulting triangulation of the domain Ω , which we assume is quasi-uniform. Then we introduce the Nédélec edge element space of the lowest order defined on \mathscr{T}_h (cf. [12] and [13]):

93 94

88

(2)

76

95 96

97

O.Y. Hu, S. Shu, J. Zou

$$V_h(\Omega) = \Big\{ \mathbf{v} \in H_0(\mathbf{curl}; \Omega); \ \mathbf{v} \mid_K \in R(K), \ \forall K \in \mathscr{T}_h \Big\},$$
104

where R(K) is a subset of all linear polynomials on the element K of the form: 105

$$R(K) = \left\{ \mathbf{a} + \mathbf{b} \times \mathbf{x}; \ \mathbf{a}, \mathbf{b} \in \mathbf{R}^3, \ \mathbf{x} \in K \right\}.$$
 106

In an analogous way, we can define the coarse edge element space $V_d(\Omega) \subset V_h(\Omega)$, 107 associated with the *coarse* triangulation \mathcal{T}_d . 108

It is well-known that for any $\mathbf{v} \in V_h(\Omega)$, its tangential components are continuous 109 on all edges of each element in the triangulation \mathcal{T}_h . Moreover, each edge element 110 function **v** in $V_h(\Omega)$ is uniquely determined by its moments on each edge *e* of \mathscr{T}_h : 111

$$\left\{\lambda_e(\mathbf{v}) = \int_e \mathbf{v} \cdot \mathbf{t}_e ds; \ e \in \mathscr{E}_h\right\},\tag{112}$$

where \mathcal{E}_h denotes the set of the *fine* edges from the triangulation \mathcal{T}_h , and \mathbf{t}_e denotes 113 the unit vector on the edge *e*. 114

By $Z_h(\Omega)$ we denote the continuous piecewise linear finite element subspace of 115 $H_0^1(\Omega)$ associated with the triangulation \mathscr{T}_h . Similarly, let $Z_d(\Omega)$ denote the continuous piecewise linear finite element subspace of $H_0^1(\Omega)$ associated with the triangulation \mathcal{T}_d . 118

2.5 Discrete Variational Problem

Using the edge element space $V_h(\Omega)$, the system (3) may be approximated as fol- 120 lows: Find $\mathbf{u}_h \in V_h(\Omega)$ such that 121

$$(\alpha \operatorname{curl} \mathbf{u}_h, \operatorname{curl} \mathbf{v}_h) + (\beta \mathbf{u}_h, \mathbf{v}_h) = (\mathbf{f}, \mathbf{v}_h), \quad \forall \mathbf{v}_h \in V_h(\Omega).$$
(4)

Define the operator
$$A: V_h(\Omega) \to V_h(\Omega)$$
 by
 $(A\mathbf{u}_h, \mathbf{v}_h) = (\alpha \operatorname{curl} \mathbf{u}_h, \operatorname{curl} \mathbf{v}_h) + (\beta \mathbf{u}_h, \mathbf{v}_h), \quad \forall \mathbf{u}_h, \mathbf{v}_h \in V_h(\Omega),$
123

Then, (4) can be written in the operator form

$$A\mathbf{u}_h = \mathbf{f}_h. \tag{5}$$

119

122

124

125

126

3 A Nearly Optimal Preconditioner for A

3.1 Construction of the Preconditioner

We first introduce some useful sets and subspaces.	127
\mathscr{E}_h : the set of all edges from the triangulations \mathscr{T}_h ;	128
$\mathscr{E}_{\Gamma,h}$: the set of edges which belong to \mathscr{E}_h and have two endpoints on the inte	rface 129
$\Gamma;$	130
\mathscr{E}_d : the set of all (coarse) edges from the triangulations \mathscr{T}_d ;	131

 \mathscr{W}_{E} : the union of all the coarse edges $E' \in \mathscr{E}_{d}$, which have a common endpoint 132 with the coarse edge $E \in \mathscr{E}_{d}$. And \mathscr{W}_{E} is called E-*basket*. 133

 $\mathscr{E}^{b}_{\mathrm{E},h}$: the set of all (fine) edges which belong to \mathscr{E}_{h} and have at least one endpoint 134 on \mathscr{W}_{E} ; 135

Let *D* be either a subdomain D_r or a subdomain Ω_k or a subdomain Ω_{ij} or a subdomain D_{mn} . The restrictions of $V_h(\Omega)$ (resp. $Z_h(\Omega)$) on *D* is denoted by $V_h(D)$ (resp. 137 $Z_h(D)$). The following local subspaces of $V_h(D)$ will be important to our analysis: 138

$$V_h^0(D) = \left\{ \mathbf{v} \in V_h(D); \, \mathbf{v} \times \mathbf{n} = 0 \text{ on } \partial D \right\},$$
139

and

$$Z_h^0(D) = \Big\{ \varphi \in Z_h(\Omega); \, supp \; \varphi \subset D \Big\}.$$
141

We define subspaces of $V_h(\Omega)$:

$$V_h^H(\Omega) = \left\{ \mathbf{v} \in V_h(\Omega); \ \mathbf{v} \text{ is the discrete } A \text{-extension of } \mathbf{v}|_{\partial\Omega_k} \text{ in each } \Omega_k \right\}, \qquad 143$$

$$V_h^H(\Omega_{ij}) = V_h^H(\Omega) \bigcap V_h^0(\Omega_{ij}),$$
¹⁴⁵

and for $E \in \mathscr{E}_d$,

$$V_{h}^{\mathrm{E}}(\Omega) = \left\{ \mathbf{v} \in V_{h}^{H}(\Omega); \ \lambda_{e}(\mathbf{v}) = 0 \text{ for each } e \in \mathscr{E}_{\Gamma,h} \setminus \mathscr{E}_{\mathrm{E},h}^{b} \right\}.$$
 147

It is well known that a suitable *coarse* subspace plays a key role in the construction of an effective domain decomposition preconditioner, and it is generally rather technical and problem-dependent to choose such a *coarse* subspace. Surprisingly we are going to choose the coarse subspace to be the simplest one, namely the subspace $V_d(\Omega)$ induced by the coarse triangluation \mathscr{T}_d .

It is easy to see that the space $V_h(\Omega)$ has the (non-direct sum) decomposition 153

$$V_h(\Omega) = V_d(\Omega) + \sum_{k=1}^N V_h^0(\Omega_k) + \sum_{\mathbf{E}} V_h^{\mathbf{E}}(\Omega) + \sum_{\Gamma_{ij}} V_h^H(\Omega_{ij}).$$
(6)

Next, we define the corresponding solvers on the subspaces $V_h^0(\Omega_k)$, $V_h^{\rm E}(\Omega)$, 154 $V_h^H(\Omega_{ij})$ and $V_d(\Omega)$.

As usual, we denote the restriction of A on $V_h^0(\Omega_k)$ by A_k , i.e.,

$$(A_k \mathbf{v}, \mathbf{u})_{\Omega_k} = (A \mathbf{v}, \mathbf{u}) = \mathscr{A}(\mathbf{v}, \mathbf{u}), \ \mathbf{v} \in V_h^0(\Omega_k), \ \forall \mathbf{u} \in V_h^0(\Omega_k).$$
 157

Let $B_k : V_h^0(\Omega_k) \to V_h^0(\Omega_k), B_d : V_d(\Omega) \to V_d(\Omega)$ and $B_{ij} : V_h^H(\Omega_{ij}) \to V_h^H(\Omega_{ij})$ 158 be the symmetric and positive definite operators such that 159

$$(B_k \mathbf{v}, \mathbf{v}) \cong (A_k \mathbf{v}_k, \mathbf{v}_k)_{\Omega_k}, \quad \forall \mathbf{v} \in V_h^0(\Omega_k),$$
 160

where $\mathbf{v}_k = \mathbf{v}|_{\Omega_k}$ for $k = 1, 2, \cdots, N$, and

Page 77

161

156

1/10

142

146

Q.Y. Hu, S. Shu, J. Zou

$$\begin{array}{ll} (B_d \mathbf{v}_d, \mathbf{v}_d) &\cong \mathscr{A}(\mathbf{v}_d, \mathbf{v}_d), \quad \forall \mathbf{v}_d \in V_d(\Omega), \\ (B_{ij} \mathbf{v}, \mathbf{v}) &\cong \mathscr{A}(\mathbf{v}, \mathbf{v}), \quad \forall \mathbf{v} \in V_h^H(\Omega_{ij}). \end{array}$$

The symbol \cong above means each of the two quantities involved is bounded by the 162 other up to a constant independent of *h*, *d* and functions involved in the two quantities. 163

The local solvers on $V_h^{\rm E}(\Omega)$ should be solvable in an efficient manner, and their technical than the others. To do so, we introduce more notation.

For any face F from the triangulations \mathcal{T}_d , we use F_b to denote the union of all ¹⁶⁸ \mathcal{T}_h -induced (closed) triangles on F, which have either one single vertex or one edge ¹⁶⁹ lying on ∂F , and F_∂ to denote the open set $F \setminus F_b$. For any subdomain Ω_k , define ¹⁷⁰

$$\Delta_k = \bigcup_{\mathbf{F} \subset \Gamma_k} \mathbf{F}_b, \quad k = 1, \cdots, N.$$
 171

175

181

185

We will also need the so-called tangential divergence $\operatorname{div}_{\tau} \Phi = \operatorname{curl}_{S} \Phi$ for $\Phi \in {}^{172}$ $V_h(\Gamma_k)$, which is defined here as in [1, 2]. Then we can introduce our local solver 173 $B_{\mathrm{E}}: V_h^{\mathrm{E}}(\Omega) \to V_h^{\mathrm{E}}(\Omega)$ as follows: 174

$$(B_{\mathrm{E}}\mathbf{v},\mathbf{u}) = h[1 + \log(d/h)] \sum_{k=1}^{N} \left\{ \alpha_{k} \langle \operatorname{div}_{\tau}(\mathbf{v} \times \mathbf{n}) |_{\Gamma_{k}}, \operatorname{div}_{\tau}(\mathbf{u} \times \mathbf{n}) |_{\Gamma_{k}} \rangle_{\Delta_{k}} + \beta_{k} \langle \mathbf{v} \times \mathbf{n}, \mathbf{u} \times \mathbf{n} \rangle_{\Delta_{k}} \right\}, \qquad \mathbf{v} \in V_{h}^{\mathrm{E}}(\Omega), \ \forall \mathbf{u} \in V_{h}^{\mathrm{E}}(\Omega).$$
(7)

For convenience, we call $B_{\rm E}$ an

Let $Q_k : V_h(\Omega) \to V_h^0(\Omega_k)$, $Q_d : V_h(\Omega) \to V_d(\Omega)$, $Q_E : V_h(\Omega) \to V_h^E(\Omega)$ and 176 $Q_{ij} : V_h(\Omega) \to V_h^H(\Omega_{ij})$ be the standard the standard L^2 -projections. Then we are 177 ready to propose our new preconditioner for A as follows: 178

$$B^{-1} = B_d^{-1}Q_d + \sum_{k=1}^N B_k^{-1}Q_k + \omega \sum_{\mathbf{E}} B_{\mathbf{E}}^{-1}Q_{\mathbf{E}} + \sum_{\Gamma_{ij}} B_{ij}^{-1}Q_{ij},$$
(8)

where ω is a (constant) relaxation parameter, which is introduced to obtain a balance the local solvers $B_{\rm E}$ and other remaining solvers. 180

3.2 Algorithm Based on the New Preconditioner and Main Results

The action of the preconditioner B^{-1} which is needed in each PCG iteration can be the described in the following algorithm.

Algorithm 4.1. For $\mathbf{g} \in V_h(\Omega)$, we can compute $\mathbf{u} = B^{-1}\mathbf{g}$ in five steps.

Step 1. Solve the system for $\mathbf{u}_d \in V_d(\Omega)$:

$$(B_d \mathbf{u}_d, \mathbf{v}_d) = (\mathbf{g}, \mathbf{v}_d), \quad \forall \mathbf{v}_d \in V_d(\Omega);$$
 186

Step 2. Solve the following system for $\mathbf{u}_k \in V_h^0(\Omega_k)$ in each subdomain in parallel: 187

$$(B_k \mathbf{u}_k, \mathbf{v}) = (\mathbf{g}, \mathbf{v}), \quad \forall \mathbf{v} \in V_h^0(\Omega_k), \quad k = 1, \cdots, N;$$
 189

Step 3. Solve the following system for $\mathbf{u}_{ij} \in V_h^0(\Omega_{ij})$ in each subdomain Ω_{ij} in 190 parallel:

$$(B_{ij}\mathbf{u}_{ij},\mathbf{v}) = (\mathbf{g},\mathbf{v}) - (A_i\mathbf{u}_i,\mathbf{v})_{\Omega_i} - (A_j\mathbf{u}_j,\mathbf{v})_{\Omega_j}, \quad \forall \mathbf{v} \in V_h^0(\Omega_{ij});$$

Step 4. Solve the system for $\mathbf{u}_{\mathrm{E}} \in V_{h}^{\mathrm{E}}(\Omega)$:

$$(B_{\mathrm{E}}\mathbf{u}_{\mathrm{E}},\mathbf{v}) = (\mathbf{g},\mathbf{\tilde{v}}) - \sum_{k=1}^{N} (A_{k}\mathbf{u}_{k},\mathbf{\tilde{v}}), \ \mathbf{v} \in V_{h}^{\mathrm{E}}(\Omega),$$
 194

where $\tilde{\mathbf{v}} \in V_h(\Omega)$ is a natural extension of $(\mathbf{v} \times \mathbf{n})|_{\Gamma}$ by zero. Step 5. Set $\Phi_h = (\sum_{I_{ij}} \mathbf{u}_{ij} + \sum_{E} \mathbf{u}_{E}) \times \mathbf{n}|_{\Gamma}$ and compute the *A*-extension *A*-extension 196 of Φ_h on each Ω_k to obtain $\mathbf{u}^H \in V_h^H(\Omega)$. This leads to 197

$$\mathbf{u} = \mathbf{u}_d + \sum_{k=1}^N \mathbf{u}_k + \mathbf{u}^H.$$
 198

193

203

Remark 1. For the local solver B_{ij} on each face Γ_{ij} , we may use the face extended 199 domain formed by, e.g., one half of each of the two neighboring subdomains Ω_i 200 and Ω_j . Such definition of B_{ij} 's can reduce the computational complexity in their 201 numerical realization. 202

Let *E* denote a coarse edge of the subdomain D_r . Define

$$V_{h}^{\perp}(\boldsymbol{\Omega}) = \{\mathbf{v}_{h} : \mathbf{v}_{h} \in V_{h}(\boldsymbol{\Omega}), \ \int_{E} \mathbf{v}_{h} \cdot \mathbf{t}_{E} ds = 0 \text{ for each } E\}.$$

We shall use $\kappa^{\perp}(B^{-1}A)$ to denote the *induced condition number* of the preconditioned system $B^{-1}A$ associated with the subspace $V_h^{\perp}(\Omega)$, namely the condition 205 number of $B^{-1}A$ restricted on the subspace $V_h^{\perp}(\Omega)$ (cf. [17]). At this moment we 207 are able to establish only the following estimate of the induced condition number. As 208 the estimate is quite lengthy and technical, we cannot include it here due to the page 209 limitation. 210

Theorem 1. Under the assumptions (2), the preconditioner B given in (8) is nearly 211 optimal in the sense that 212

$$\kappa^{\perp}(B^{-1}A) \le C[1 + \log(d/h)]^2 [1 + \log(1/h)]^2 \tag{9}$$

where the constant C is independent of h, d and the jumps of the coefficients. 213

As we see from the above theorem that the induced condition number grows 214 logarithmically with the degrees of freedom in each subdomain, but also with the 215

Q.Y. Hu, S. Shu, J. Zou

degrees of freedom of the entire fine mesh. We believe this is mainly due to the restriction of our current analysis technique, namely the estimate must be done for the induced condition number in the subspace $V_h^{\perp}(\Omega)$ associated with the coarse triangulation formed by the material subdomains D_r . We expect the estimate should be finally carried out directly in the entire edge element space $V_h(\Omega)$, that will remove the logarithmic factor of 1/h in the estimate (9). This expectation has already been confirmed by our three-dimensional numerical experiments; see the next section.

4 Numerical Experiments

223

In this section we shall conduct some numerical experiments to check the convergence of the newly proposed preconditioner, and find out whether they are consistent with the prediction of the convergence theory developed in the previous sections. 226

In our experiments, we take the domain to be the unit cube $\Omega = (0,1)^3$, while 227 the right-hand side **f** of the system (1) is selected such that the exact solution **u** = 228 $(u_1, u_2, u_3)^T$ is given by 229

$$u_1 = xyz(x-1)(y-1)(z-1),$$

$$u_2 = \sin(\pi x)\sin(\pi y)\sin(\pi z),$$

$$u_3 = (1-e^x)(1-e^{x-1})(1-e^y)(1-e^{y-1})(1-e^z)(1-e^{z-1}),$$

when the coefficients $\alpha(\mathbf{x})$ and $\beta(\mathbf{x})$ are both constant 1. This right-hand side **f** is 230 then fixed in all our experiments, but the coefficients $\alpha(\mathbf{x})$ and $\beta(\mathbf{x})$ may be taken 231 differently. 232

We then need to triangulate the domain Ω into subdomains $\{\Omega_k\}$. For this, we 233 first partition the three edges of Ω on *x*-, *y*- and *z*-axis into *n* equal subintervals from 234 which one can naturally generate n^3 equal smaller cubes of size d = 1/n. This yields 235 the desired subdomain decomposition in our experiments. 236

Next, we further triangulate each subdomain Ω_k to get a fine triangulation \mathcal{T}_h of 237 size *h* over the domain Ω . To generate \mathcal{T}_h , we divide each subdomain into m^3 equal 238 smaller cubes of size h = 1/(mn), in the same manner as done in the previous subdo-239 main generation. Then \mathcal{T}_h is obtained by triangulating each cube into six tetrahedra. 240 For easy identification, we may denote the triangulation \mathcal{T}_h as $m^3(n^3)$ below. 241

The edge finite element space of the lowest order is used for the discretization 242 of (3). The resulting system (5) is solved by PCG method with the newly proposed 243 preconditioners *B* defined in Sect. 4. We shall choose the balancing parameter ω in 244 front of the E-*basket* local solvers $B_{\rm E}$ in (8) as $\omega = 1$ or $\omega = 2.5$.

We consider various distributions of the coefficients $\alpha(\mathbf{x})$ and $\beta(\mathbf{x})$ and report 246 the corresponding numbers of PCG iterations, and the condition numbers of $B^{-1}A$ 247 for some representative cases. The PCG iteration is terminated in our experiments 248 when the relative residual is less than 10^{-6} . 249

Case (i): coefficients $\alpha(\mathbf{x}) = \beta(\mathbf{x}) = 1$, with no jumps. The PCG iterations and the 250 condition numbers (in brackets) for $\omega = 2.5$ are listed in Table 1.

A Substructuring Preconditioner for Maxwell's Equations

		ω=	= 1.()	$\omega = 2.5$								
$m \setminus n$	4	6	8	10	4	6	8	10					
4	34	33	32	32	31 (34.24)	31 (36.31)	31 (36.94)	30 (37.40)					
8	41	40	39	38	39 (52.15)	38 (53.78)	37 (54.21)	37 (54.61)					
12	48	47	44	42	43 (64.29)	43 (65.91)	41 (66.19)	41 (66.62)					
16	51	50	49	45	47 (74.40)	46 (75.69)	44 (75.82)	44 (76.39)					

Table 1. Iterations (and condition numbers) with smooth coefficients

We observe from the above table that the number of PCG iterations grows slowly 252 when m = d/h increases but n = 1/d is fixed, and that these numbers vary stably 253 when *m* is fixed but *n* increases. This justifies our early expection that the condition 254 number of the preconditioned system $B^{-1}A$ should grow logarithmically with d/h 255 only, not with 1/h.

One important issue we like to draw the readers' attention to is the large-scale of $_{257}$ the discrete system we are solving. For instance, when m = 16 and n = 10, the total $_{258}$ number of degrees of freedom for the fine edge element system is about 28,672,000. $_{259}$

Case (ii): coefficients $\alpha(\mathbf{x})$ and $\beta(\mathbf{x})$ have large jumps:

$$\alpha(\mathbf{x}) = \beta(\mathbf{x}) = \alpha_0$$
 in D ; $\alpha(\mathbf{x}) = \beta(\mathbf{x}) = 1$ in $\Omega \setminus D$. 261

where $D \subset \Omega$ is a union of several subdomains Ω_k . We choose $\alpha_0 = 10^{-5}$ or $\alpha_0 = 262$ 10⁵, and consider two choices of *D*, where one does not have *cross-points*, while the 263 other has one *cross-point*.

Example 1:

$$D = [\frac{1}{4}, \frac{1}{2}]^3.$$
 266

260

265

267

Example 2:

$$D = \begin{bmatrix} \frac{1}{4}, \ \frac{1}{2} \end{bmatrix}^3 \bigcup \begin{bmatrix} \frac{1}{2}, \ \frac{3}{4} \end{bmatrix}^3.$$
 268

The numerical results are given in Tables 2 and 3, from which we can make some 269 similar observations about the PCG convergence in terms of the mesh and subdomain 270 quantities d/h and d as we did for Case (i). 271

			Example 1				Example 2	t2	
	ω	= 1.0	$\omega = 2.5$			= 1.0	ω =	= 2.5	t2
$m \setminus n$	4	8	4 8		4	8	4	8	t2
4	29	31	26 (32.00)	29 (35.97)	28	30	26 (35.51)	30 (35.97)	t2
8	35	38	32 (44.88)	37 (52.97)	35	38	32 (45.88)	37 (52.59)	t2
12	38	45	36 (56.02)	42 (64.96)	37	45	35 (55.66)	41 (63.81)	t2
16	40	49	37 (64.65)	45 (74.68)	40	49	37 (65.65)	45 (74.31)	t2

Table 2. Iterations (and condition numbers) with $\alpha_0 = 10^{-5}$

Q.Y. Hu, S. Shu, J. Zou

			Example 1				Example 2	t3.1	
	ω	= 1.0	ω =	= 2.5	ω	= 1.0	ω =	= 2.5	t3.2
$m \setminus n$	4	8	4 8		4	8	4	8	t3.3
4	42	42	36 (40.47)	36 (42.71)	42	44	38 (40.55)	37 (42.72)	t3.4
8	49	48	45 (61.08)	44 (62.89)	52	51	46 (60.20)	45 (62.89)	t3.5
12	55	54	50 (74.04)	49 (76.28)	56	56	50 (76.24)	51 (76.28)	t3.6
16	59	57	54 (91.51)	52 (86.45)	59	59	53 (83.35)	54 (86.45)	t3.7

Table 3. Iterations (and condition numbers) with $\alpha_0 = 10^5$

Case (iii): coefficients $\alpha(\mathbf{x})$ and $\beta(\mathbf{x})$ have large jumps:

$$\alpha(\mathbf{x}) = \begin{cases} \alpha_0, & \text{in } D \\ & & \beta(\mathbf{x}) = \begin{cases} \beta_0, & \text{in } D \\ 1, & \text{in } \Omega \setminus D, \end{cases}$$
 273

272

where $D \subset \Omega$ is a union of several subdomains Ω_k . We choose $\alpha_0 = 10^{-5}$ or $\alpha_0 = 274$ 10⁵, but $\beta_0 \neq \alpha_0$. We still consider two different regions *D* from Examples 1 and 2 in 275 the previous Case (ii), but choose the balancing parameter ω in front of the *E*-basket 276 local solvers B_E in (8) as $\omega = 2.5$.

The numerical results are given in Tables 4 and 5. Again, we can make simi- $_{278}$ lar observations about the PCG convergence in terms of the mesh and subdomain $_{279}$ quantities d/h and d as we did for Case (i). $_{280}$

			Exar	nple	1	Example 2						
	$egin{array}{c c c c c c c c c c c c c c c c c c c $						$\beta_0 = \alpha_0 \times 10^2 \beta_0 = \alpha_0 \times 10^{-2}$					
$m \setminus n$	1 4	X	8	4	8	4	8	4	8			
4	30		36	46	47	30	36	45	47			
8	39	/	43	56	56	39	45	56	56			
16	49		52	65	65	49	52	63	65			

Table 4. Iterations with $\alpha_0 = 10^{-5}$

[Exan	nple	1		Exan	nple	t	
		β_0 =	$= \alpha_0 \times 10^2$	β_0 =	$= \alpha_0 \times 10^{-2}$	β_0 :	$= \alpha_0 \times 10^2$	β_0 =	t	
[$m \setminus n$	4	8	4	8	4	8	4	8	të
[4	31	37	38	41	31	37	39	46	të
Ī	8	37	47	46	49	37	47	53	58	t
	16	48	56	55	57	48	56	66	73	t

Table 5. Iterations with $\alpha_0 = 10^5$

We may also observe from the previous numerical experiments that appropriate 281 choices of the parameter ω can significantly improve the efficiency of the precon- 282 ditioner *B*. It is important to see that the choices of ω seem independent of the fine 283

and coarse meshsizes h and d, so we may determine ω by solving some small scale 284 systems, e.g., a system with m = n = 4. 285

AcknowledgmentsQH was supported by the Major Research Plan of Natural Science286Foundation of China G91130015, the Key Project of Natural Science Foundation of China287G11031006 and National Basic Research Program of China G2011309702. SS was supported288by NSFC Project 91130002 and 11171281, the project of Scientific Research Fund of Hunan289Provincial Education Department 10C1265 and 11C1219, and the project of Xiangtan Uni-290versity 10XZX03. JZ was substantially supported by Hong Kong RGC grant (Project 405110)291and a Direct Grant from Chinese University of Hong Kong.292

Bibliography

293

 A. Alonso and A. Valli. Some remarks on the characterization of the space of tangential traces of <i>H</i>(curl; Ω) and the construction of an extension operator. <i>Manuscr. Math.</i>, 89:159–178, 1996. A. Alonso and A. Valli. An optimal domain decomposition preconditioner for low-frequency time-harmonic maxwell equations. <i>Math. Comp.</i>, 68(6):607–631, 1999. J. Bramble, J. Pasciak, and A. Schatz. The construction of preconditioner for elliptic problems by substructuring. <i>IV. Math. Comp.</i>, 53(5):1–24, 1989. M. Cessenat. <i>Mathematical methods in electromagnetism</i>. World Scientific, River Edge, NJ, 1998. Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and nonmatching meshes for maxwell equations with discontinuous coefficients. <i>SIAM J. Numer. Anal.</i>, 37:1542–1570, 1999. P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. J. Nedelec. Mixed finite elements in <i>R</i>³. <i>Numer. Math.</i>, 35:315–341, 1980. 			
 tangential traces of <i>H</i>(curl; Ω) and the construction of an extension operator. <i>Manuscr. Math.</i>, 89:159–178, 1996. [2] A. Alonso and A. Valli. An optimal domain decomposition preconditioner for low-frequency time-harmonic maxwell equations. <i>Math. Comp.</i>, 68(6):607–631, 1999. [3] J. Bramble, J. Pasciak, and A. Schatz. The construction of preconditioner for elliptic problems by substructuring. <i>IV. Math. Comp.</i>, 53(5):1–24, 1989. [4] M. Cessenat. <i>Mathematical methods in electromagnetism</i>. World Scientific, River Edge, NJ, 1998. [5] Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and nonmatching meshes for maxwell equations with discontinuous coefficients. <i>SIAM J. Numer. Anal.</i>, 37:1542–1570, 1999. [6] P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 	[1]	A. Alonso and A. Valli. Some remarks on the characterization of the space of	294
 <i>Manuscr. Math.</i>, 89:159–178, 1996. [2] A. Alonso and A. Valli. An optimal domain decomposition preconditioner for low-frequency time-harmonic maxwell equations. <i>Math. Comp.</i>, 68(6):607–631, 1999. [3] J. Bramble, J. Pasciak, and A. Schatz. The construction of preconditioner for elliptic problems by substructuring. <i>IV. Math. Comp.</i>, 53(5):1–24, 1989. [4] M. Cessenat. <i>Mathematical methods in electromagnetism.</i> World Scientific, River Edge, NJ, 1998. [5] Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and nonmatching meshes for maxwell equations with discontinuous coefficients. <i>SIAM J. Numer. Anal.</i>, 37:1542–1570, 1999. [6] P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		tangential traces of $H(\operatorname{curl}; \Omega)$ and the construction of an extension operator.	295
 [2] A. Alonso and A. Valli. An optimal domain decomposition preconditioner for low-frequency time-harmonic maxwell equations. <i>Math. Comp.</i>, 68(6):607–631, 1999. [3] J. Bramble, J. Pasciak, and A. Schatz. The construction of preconditioner for elliptic problems by substructuring. <i>IV. Math. Comp.</i>, 53(5):1–24, 1989. [4] M. Cessenat. <i>Mathematical methods in electromagnetism</i>. World Scientific, River Edge, NJ, 1998. [5] Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and nonmatching meshes for maxwell equations with discontinuous coefficients. <i>SIAM J. Numer. Anal.</i>, 37:1542–1570, 1999. [6] P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in <i>R</i>³. <i>Numer. Math.</i>, 35:315–341, 1980. 		Manuscr. Math., 89:159–178, 1996.	296
 low-frequency time-harmonic maxwell equations. <i>Math. Comp.</i>, 68(6):607–631, 1999. J. Bramble, J. Pasciak, and A. Schatz. The construction of preconditioner for elliptic problems by substructuring. <i>IV. Math. Comp.</i>, 53(5):1–24, 1989. M. Cessenat. <i>Mathematical methods in electromagnetism</i>. World Scientific, River Edge, NJ, 1998. Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and nonmatching meshes for maxwell equations with discontinuous coefficients. <i>SIAM J. Numer. Anal.</i>, 37:1542–1570, 1999. P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. J. Nedelec. Mixed finite elements in <i>R</i>³. <i>Numer. Math.</i>, 35:315–341, 1980. 	[2]	A. Alonso and A. Valli. An optimal domain decomposition preconditioner for	297
 [3] J. Bramble, J. Pasciak, and A. Schatz. The construction of preconditioner for elliptic problems by substructuring. <i>IV. Math. Comp.</i>, 53(5):1–24, 1989. [4] M. Cessenat. <i>Mathematical methods in electromagnetism</i>. World Scientific, River Edge, NJ, 1998. [5] Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and nonmatching meshes for maxwell equations with discontinuous coefficients. <i>SIAM J. Numer. Anal.</i>, 37:1542–1570, 1999. [6] P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		low-frequency time-harmonic maxwell equations. Math. Comp., 68(6):607-	298
 [3] J. Bramble, J. Pasciak, and A. Schatz. The construction of preconditioner for elliptic problems by substructuring. <i>IV. Math. Comp.</i>, 53(5):1–24, 1989. [4] M. Cessenat. <i>Mathematical methods in electromagnetism.</i> World Scientific, River Edge, NJ, 1998. [5] Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and nonmatching meshes for maxwell equations with discontinuous coefficients. <i>SIAM J. Numer. Anal.</i>, 37:1542–1570, 1999. [6] P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		631, 1999.	299
 elliptic problems by substructuring. <i>IV. Math. Comp.</i>, 53(5):1–24, 1989. [4] M. Cessenat. <i>Mathematical methods in electromagnetism</i>. World Scientific, River Edge, NJ, 1998. [5] Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and nonmatching meshes for maxwell equations with discontinuous coefficients. <i>SIAM J. Numer. Anal.</i>, 37:1542–1570, 1999. [6] P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in <i>R</i>³. <i>Numer. Math.</i>, 35:315–341, 1980. 	[3]	J. Bramble, J. Pasciak, and A. Schatz. The construction of preconditioner for	300
 [4] M. Cessenat. <i>Mathematical methods in electromagnetism</i>. World Scientific, River Edge, NJ, 1998. [5] Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and nonmatching meshes for maxwell equations with discontinuous coefficients. <i>SIAM J. Numer. Anal.</i>, 37:1542–1570, 1999. [6] P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in <i>R</i>³. <i>Numer. Math.</i>, 35:315–341, 1980. 		elliptic problems by substructuring. IV. Math. Comp., 53(5):1–24, 1989.	301
 River Edge, NJ, 1998. [5] Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and non-matching meshes for maxwell equations with discontinuous coefficients. <i>SIAM J. Numer. Anal.</i>, 37:1542–1570, 1999. [6] P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 	[4]	M. Cessenat. Mathematical methods in electromagnetism. World Scientific,	302
 [5] Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and non-matching meshes for maxwell equations with discontinuous coefficients. <i>SIAM J. Numer. Anal.</i>, 37:1542–1570, 1999. [6] P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in <i>R</i>³. <i>Numer. Math.</i>, 35:315–341, 1980. 		River Edge, NJ, 1998.	303
 matching meshes for maxwell equations with discontinuous coefficients. <i>SIAM J. Numer. Anal.</i>, 37:1542–1570, 1999. [6] P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in <i>R</i>³. <i>Numer. Math.</i>, 35:315–341, 1980. 	[5]	Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and non-	304
 J. Numer. Anal., 37:1542–1570, 1999. [6] P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		matching meshes for maxwell equations with discontinuous coefficients. SIAM	305
 [6] P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in <i>R</i>³. <i>Numer. Math.</i>, 35:315–341, 1980. 		J. Numer. Anal., 37:1542–1570, 1999.	306
 dependent maxwell's equations. <i>Numer. Math.</i>, 82(8):193–219, 1999. [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 	[6]	P. Ciarlet, Jr., and J. Zou. Fully discrete finite element approaches for time-	307
 [7] C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		dependent maxwell's equations. Numer. Math., 82(8):193-219, 1999.	308
 two-dimensional problems in <i>H</i>(curl). Technical report, TR2010-936, Courant Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 	[7]	C. R. Dohrmann and O. Widlund. An iterative substructuring algorithm for	309
 Institute, New York, 2010. [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		two-dimensional problems in $H(\mathbf{curl})$. Technical report, TR2010-936, Courant	310
 [8] R. Hiptmair. Finite elements in computational electromagnetism. <i>Acta Numerica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		Institute, New York, 2010.	311
 <i>ica</i>, 11:237–339, 2002. [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 	[8]	R. Hiptmair. Finite elements in computational electromagnetism. Acta Numer-	312
 [9] Q. Hu and J. Zou. A non-overlapping domain decomposition method for maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		<i>ica</i> , 11:237–339, 2002.	313
 maxwell's equations in three dimensions. <i>SIAM J. Numer. Anal.</i>, 41:1682–1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 	[9]	Q. Hu and J. Zou. A non-overlapping domain decomposition method for	314
 1708, 2003. [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		maxwell's equations in three dimensions. SIAM J. Numer. Anal., 41:1682-	315
 [10] Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		1708, 2003.	316
 arising from maxwell's equations in three dimensions. <i>Math. Comput.</i>, 73:35–61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 	[10]	Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems	317
 61, 2004. [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		arising from maxwell's equations in three dimensions. Math. Comput., 73:35-	318
 [11] P. Monk. Analysis of a finite element method for maxwell's equations. <i>SIAM J. Numer. Anal.</i>, 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		61, 2004.	319
 J. Numer. Anal., 29:32–56, 1992. [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 	[11]	P. Monk. Analysis of a finite element method for maxwell's equations. SIAM	320
 [12] P. Monk. <i>Finite Element Methods for Maxwell's Equations</i>. Oxford University Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R³. <i>Numer. Math.</i>, 35:315–341, 1980. 		J. Numer. Anal., 29:32–56, 1992.	321
Press, Oxford, 2003. [13] J. Nedelec. Mixed finite elements in R^3 . <i>Numer. Math.</i> , 35:315–341, 1980.	[12]	P. Monk. Finite Element Methods for Maxwell's Equations. Oxford University	322
[13] J. Nedelec. Mixed finite elements in R^3 . Numer. Math., 35:315–341, 1980.		Press, Oxford, 2003.	323
	[13]	J. Nedelec. Mixed finite elements in R ³ . Numer. Math., 35:315–341, 1980.	324

Q.Y. Hu, S. Shu, J. Zou

- [14] A. Toselli. Dual-primal FETI algorithms for edge finite-element approximations in 3d. *IMA J. Numer. Anal.*, 26:96–130, 2006.
- [15] A. Toselli and O. Widlund. Domain Decomposition Methods Algorithms and Theory. Springer, New York, 2004.
- [16] A. Toselli, O. Widlund, and B. Wohlmuth. An iterative substructuring method 329 for Maxwell's equations in two dimensions. *Math. Comp.*, 70:935–949, 2001. 330
- [17] J. Xu and Y. Zhu. Uniform convergent multigrid methods for elliptic problems 331 with strongly discontinuous coefficients. *M*³*AS*, 18:77–105, 2008. 332
- [18] J. Xu and J. Zou. Some non-overlapping domain decomposition methods. 333 SIAM Review, 40:857–914, 1998. 334