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1 Introduction 9

The focus of this work is on constructing a robust (uniform in the problem param- 10

eters) iterative solution method for the system of linear algebraic equations arising 11

from a nonconforming finite element discretization based on reduced integration. We 12

introduce a specific space decomposition into two overlapping subspaces that serves 13

as a basis for devising a uniformly convergent subspace correction algorithm. We 14

consider the equations of linear elasticity in primal variables. For nearly incompress- 15

ible materials, i.e., when the Poisson ratio ν approaches 1/2, this problem becomes 16

ill-posed and the resulting discrete problem is nearly singular. 17

Subspace correction methods for nearly singular systems have been studied 18

in [10] leading to robust multigrid methods for planar linear elasticity problems 19

(see [11]). In [13] a multigrid method has been presented for a finite element dis- 20

cretization with P2−P0 elements. This approach relies on a local basis for the weakly 21

divergence-free functions. 22

In this setting, presently known (multilevel) iterative solution methods are opti- 23

mal or nearly optimal for the pure displacement problem only, i.e., when Dirichlet 24

boundary conditions are imposed on the entire boundary, see, e.g., [1, 4]. For pure 25

traction or mixed boundary conditions the problem gets more involved. It is known, 26

that standard (conforming and nonconforming) finite element methods then require 27

certain stabilization techniques, see, e.g., [3, 6]. We employ a discretization scheme 28

introduced in [3] which achieves the stabilization via reduced integration. Note that 29

based on an appropriate discrete version of Korn’s second inequality optimal error 30

estimates have been shown for this method (see [3]). 31

The remainder of this paper is organized as follows: The formulation of the lin- 32

ear elasticity problem with pure traction boundary conditions and its finite element 33

discretization are given in Sect. 2. We briefly recall some convergence results for the 34

Method of Successive Subspace Correction (MSSC) in Sect. 3. In Sect. 4 we present 35

a specific space decomposition which defines an MSSC preconditioner. Finally, we 36
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present a numerical test illustrating the optimal performance of the preconditioner in 37

Sect. 5. 38

2 Problem Formulation 39

For the sake of simplicity we consider only two-dimensional problems in this paper. 40

Let Ω be a bounded, connected and open subset of R2, denoting the reference con- 41

figuration of an elastic body. The boundary of Ω is denoted by ∂Ω . Following [3] 42

we consider the pure traction problem of linear elasticity which reads 43

σσσ = μ
[

εεε(u)+
ν

1−2ν
divuI

]
in Ω , (1a)

−divσσσ = f in Ω , (1b)

σσσ ·n = g on ∂Ω . (1c)

where σσσ denotes the stress tensor and εεε(u):= ∇(s)u is the symmetric gradient, i.e., 44

εi j(u):= 1
2

(
∂ui
∂x j

+
∂u j
∂xi

)
. Further u denotes the vector of displacements, f denotes 45

the body forces, n is the outwards pointing unit normal vector on Γ = ∂Ω and g is 46

the applied load on Γ . The properties of the material depend on the Poisson ratio 47

ν ∈ [0,1/2), and the shear modulus μ := E
1+ν where E is the modulus of elasticity. 48

We consider the space VVV RBM:= {v : v = (a1 + by, a2− bx)t , a1, a2, b ∈ R} of 49

rigid body motions and define the subspace V̂VV of H1-functions orthogonal to VVV RBM, 50

i.e., 51

V̂VV := {v ∈ [H1(Ω)]2 :
∫

Ω
vdx = 0 and

∫
Ω

v1y− v2xdx = 0} . (2)

Let TH be a quasi-uniform triangulation of Ω . Moreover, we subdivide each triangle 52

T ∈TH into four congruent triangles by adding the midpoints of the edges to the set 53

of vertices. The obtained refined triangulation Th of Ω has a mesh size h = H/2. 54

We introduce the vector space VVV := [V ]2:= [H1(Ω)]2 and the subspace VVV h:= [Vh]
2, 55

which consists of the vector-valued continuous piecewise linear functions on the fine 56

mesh Th. Next we define V̂VV h := VVV h ∩ V̂VV and denote the space of piecewise constant 57

functions on TH by SH . Then we consider the problem: Find uh ∈ V̂VV h such that 58

a(uh, vh) = L(vh):= (f , vh)0 +

∫
∂Ω

g ·vh ds ∀vh ∈ V̂h , (3)

a(uh, vh):= μ
(
(εεε(uh) , εεε(vh))0 +

ν
1−2ν

(P0 divuh , P0 divvh)0

)
, (4)

where f ∈ [L2(Ω)]2 and g ∈ [L2(∂Ω)]2. P0 is the L2-projection onto SH , that is, 59

P0(v)|TH =
1
|TH |

∫
TH

vdx ∀TH ∈ TH , (5)

for any scalar function v ∈ L2(Ω). It is known that under the compatibility condition 60

L(v) = 0 for all v ∈VVV RBM problem (3) has a unique solution uh ∈ V̂VV h, see, e.g., [1]. 61

In [3] optimal order error estimates have been shown for this approximation, which 62

are robust with respect to the Poisson ratio ν . 63
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3 Subspace Correction Framework 64

The general framework of subspace correction methods is closely related to the ab- 65

stract Schwarz theory, see, e.g., [5, 14]. 66

Let us consider the variational problem: Find u ∈V such that 67

a(u, v) = f (v) ∀v ∈V , (6)

with V ⊂ H being a closed subset of the Hilbert space H. Moreover, we assume that 68

the bilinear form a(., .) : H×H → R is continuous, symmetric, and H-elliptic. If f 69

is a continuous linear functional on H, then this problem is well-posed. 70

Now, let us split V into a–not necessarily direct–sum of closed subspaces Vi ⊂ 71

V , i = 1, . . . , J, i.e., V = ∑J
i=1 Vi. With each subspace Vi we associate a symmetric, 72

bounded, and elliptic bilinear form ai(., .) approximating a(., .) on Vi. The MSSC 73

(see [16, Algorigthm 2.1]) solves the residual equation for i = 1, . . . ,J with ul = ul: 74

Find ei ∈Vi such that for all vi ∈Vi, there holds: 75

a(ei, vi) = f (vi)−a(ul+i−1, vi), and set ul+i = ul+i−1 + ei, (7)

Finally, the next iterate is ul+1 = ul+J . Let Ti : V →Vi be defined as 76

ai(Tiv, vi) = a(v, vi), for all vi ∈Vi.

The assumptions on ai(., .) imply that Ti is well-defined, R(Ti) =Vi, and Ti : Vi→Vi 77

is an isomorphism. The error after l iterations of the MSSC is given by u−ul =E(u− 78

ul−1) = . . .= El(u−u0), where the error propagation operator E can be represented 79

in product form , i.e., 80

E = (I−TJ)(I−TJ−1) · · · (I−T1) . (8)

In the following we consider the case of exact subspace solves, i.e., ai(., .) = a(., .) 81

on Vi, in which Ti reduces to the idempotent, a-adjoint operator Pi defined by 82

a(Piv, vi) = a(v, vi) ∀vi ∈Vi . (9)

For a proof of the following identity for the energy norm of the error propagation 83

operator we refer the reader to [16]. 84

Theorem 1. Under the assumptions (9) and V = ∑J
i=1 Vi we have 85

‖E‖2
a = ‖(I−PJ)(I−PJ−1) · · · (I−P1)‖2

a =
c0

1+ c0
(10)

where c0 = sup‖v‖a=1 inf∑i vi=v ∑J
i=1 ‖Pi ∑J

j=i+1 v j‖2
a < ∞ . 86

Let EH be the set of edges of TH and VH be the set of (coarse) vertices of the mesh 87

TH . Then for any vertex vi ∈ VH we denote the set of edges sharing vi by N E
i . 88

For any edge E = (vE,1, vE,2) ∈ EH by ϕE we denote the scalar nodal basis function 89

corresponding to the midpoint of the edge E , and by ϕE,1 and ϕE,2 the nodal basis 90
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functions corresponding to the vertices vE,1 and vE,2 of E . The corresponding vector- 91

valued degrees of freedom (dof) of any function vh ∈VVV h are denoted by vE , vE,1 and 92

vE,2, respectively. We further use ϕi and vi to denote the basis functions and dof 93

associated with the vertices from VH . 94

For any edge E ∈ EH we assume that vE,1 < vE,2 and that the globally defined 95

tangential vector τE points from vE,1 to vE,2. The global edge normal vector nE is 96

orthogonal to τE and is obtained from τE by a clockwise rotation. By VVV RT
H we denote 97

the lowest order Raviart Thomas space (cf. [2]), i.e., 98

VVV RT
H := {v ∈ [L2(Ω)]2 : v = a+(bx, by)t on each T ∈TH , a ∈R

2, b ∈ R} (11)

where the degrees of freedom are the normal fluxes over the edges E , i.e., FRT
E (v):= 99

1
|E|

∫
E v · nE ds. The basis functions ϕRT

E corresponding to an edge E of an element 100

T ∈ TH are such that FRT
E ′ (ϕ

RT
E ):= δEE ′ . We also use the projection Π RT : VVV 	→ 101

VVV RT
H defined by Π RT (v) = ∑E∈EH

FRT
E (v)ϕRT

E , for which the commuting property 102

P0 divvh = divΠ RT (vh) holds for any vh ∈VVV h (cf. [2, p. 131]). 103

4 Space Decomposition 104

Let us consider the following unique decomposition of any function vh ∈VVV h: 105

vh = ∑
i∈VH

ϕivi + ∑
E∈EH

ϕEvE

= ∑
i∈VH

[
ϕivi− 1

2 ∑
E∈N E

i

(vi ·nE)ϕE nE

]

︸ ︷︷ ︸
=:vV

+ ∑
E∈EH

(vE · τE)ϕEτE

︸ ︷︷ ︸
=:vτ

+ ∑
E∈EH

([
vE +

1
2
(vE,1 + vE,2)

]
·nE

)
ϕEnE

︸ ︷︷ ︸
=:vn

.

Next we define the splitting VVV h =VVVV ⊕VVV τ ⊕VVV n , where 106

VVVV := {vh ∈VVV h : vh = ∑
i∈VH

[
ϕivi− 1

2 ∑
E∈N E

i

(vi ·nE)ϕE nE

]
} ,

VVV τ := {vh ∈VVV h : vh = ∑
E∈EH

αEϕEτE}, VVV n:= {vh ∈VVV h : vh = ∑
E∈EH

αEϕEnE} .

Note that Π RT (VVVV ) = Π RT (VVV τ) = {0}. Next, we introduce the spaces 107

VVV curl := {vh ∈VVV h : vh = ∑
i∈VH

βi ∑
E∈N E

i

δE,i

|E| ϕEnE} ,

VVV ∇h
:= {vh ∈VVV h : vh = ∑

T∈TH

γT ∑
E⊂T

(nE ·nE,T )ϕEnE} .
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Here δE,i is defined by 108

δE,i =

{−1 if i = vE,1

1 if i = vE,2
. (12)

Note that VVV curl ⊂VVV n, and VVV ∇h
⊂VVV n, and the following properties hold: 109

P0 div(vcurl) = divΠ RT (vcurl) = 0 ∀vcurl ∈VVV curl ,

P0 div(v∇h
) = divΠ RT (v∇h

) �= 0 ∀v∇h
∈VVV ∇h

.

Moreover, dim(VVV curl) = nv,H −1 and dim(VVV ∇h
) = nT,H , and thus, using Euler’s for- 110

mula, i.e., nv,H −1+ nT,H = nE,H , we find that VVV n =VVV curl⊕VVV ∇h
. Hence we obtain 111

VVV h =VVVV ⊕VVV τ ⊕VVV curl⊕VVV ∇h
. (13)

Finally, we decompose VVV h into two overlapping subspaces VVV I and VVV II : 112

VVV I = VVVV ⊕VVV τ ⊕VVV curl (14)

VVV II = VVV τ ⊕VVV curl⊕VVV ∇h
(15)

The overlap of VVV I and VVV II is given by VVV τ +VVV curl, and any element vII ∈ VVV II can 113

be uniquely decomposed into vII = vτ + vcurl + v∇h
, with vτ ∈ VVV τ , vcurl ∈ VVV curl and 114

v∇h
∈VVV ∇h

. However, finding the components vcurl ∈VVV curl and v∇h
∈VVV ∇h

for a given 115

function vn ∈VVV n requires a solution of a system with an M-matrix corresponding to 116

the lowest order mixed method for Laplace equation with lumped mass [2]. 117

Note that since P0 div(VVV I) = divΠ RT (VVV I) = {0} the bilinear form a(., .) satisfies 118

a(uI , vI) = μ(εεε(uI) , εεε(vI))0 ∀uI , vI ∈VVV I , (16)

and in the limit case ν = 0 we have a(uh,vh) = μ(εεε(uh) , εεε(vh))0 for all uh, vh ∈VVV h. 119

In the following, we use the operator representations A : V →V and Aε : V →V 120

for the bilinear forms a(., .) and μ(εεε(.) , εεε(.))0. If we symmetrize the MSSC, we 121

obtain the following error propagation ĒMSSC, compare with (8) in case of J = 2 and 122

exact subsolves, i.e., 123

ĒMSSC = (I−PI)(I−PII)(I−PI) .

The error propagation operator can be rewritten as ĒMSSC = I− B̄MSSCA, with sym- 124

metric B̄MSSC . Further, B̄MSSC is positive definite, since ĒMSSC is non-expansive. Note 125

that even though B̄MSSC = (I− ĒMSSC)A−1 formally involves the inverse of A, we do 126

not need A−1 in order to apply B̄MSSC. 127

If ν is bounded away from the incompressible limit 1/2, we know that Aε is 128

spectrally equivalent to A. Further, there are efficient preconditioners for Aε . We now 129

define the additive preconditioner B by 130

B:=
1−2ν
1−ν

A−1
ε +

ν
1−ν

B̄MSSC . (17)

Note that B is a convex combination of A−1
ε and B̄MSSC. 131
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Remark 1. It has been shown in [14, 16] that an inexact solution of the subprob- 132

lems (7) results in a uniform preconditioner under reasonable assumptions. The sub- 133

problems on the spaces VVV I and VVV h involve the bilinear form 134

ā(ui, vi) = μ(εεε(ui) , εεε(vi))0 ∀ui, vi ∈WWW =VVV I ,VVV h . (18)

Any efficient preconditioning technique for the vector-Laplace equation can be em- 135

ployed in these steps, e.g., classical AMG (see [12]) or AMGm (see [8]). 136

The problem on VVV II = VVV E := {vh ∈ VVV h : vh(xi) = 0 vi ∈ VH} is more involved. 137

First, by using Korn’s inequality, Poincarè’s inequality and the inverse inequality one 138

can show that 139

‖εεε(vE)‖2
0 ≈ ‖∇∇∇vE‖2

0 ≈ H−2‖vE‖2
0 .

Second, any function vE ∈VVV E can be uniquely decomposed into vE = vn+vτ where 140

vn ∈VVV n and vτ ∈VVV τ . Moreover, by locally estimating the angle between VVV n and VVV τ 141

in the a(·, ·)-inner product, it can be shown that 142

‖vE‖2
0 = ‖vn + vτ‖2

0 ≈ ‖vn‖2
0 + ‖vτ‖2

0 (19)

holds uniformly with respect to the mesh size h. Furthermore Π RT (vτ) = 0 for all 143

vτ ∈VVV τ . Hence, the relation a(uE , vE)≈ ã(uE , vE) holds on VVV II where 144

ã(uE , vE) := μ
{

H−2(uτ , vτ )0

+H−2(un , vn)0 +
ν

1−2ν
(P0 divun , P0 divvn)0

}
. (20)

Now, using the interpolation operator Ih
RT : VVV RT

H → VVV h, defined by Ih
RT (ϕRT

E ) = 145

2ϕEnE ∈VVV n, one can show that VVV n is isomorphic to VVV RT
H . Thus solving a variational 146

problem with ã(., .) on VVV n is equivalent to solving a problem with the bilinear form 147

aRT (uRT , vRT ):= μ
{

H−2(uRT , vRT )0 +
ν

1−2ν
(divuRT , divvRT )0

}
, (21)

on VVV RT
H (see [7, 15]). An efficient solver for the latter problem can be designed by 148

using the auxiliary space preconditioner of [7], or by using the robust algebraic mul- 149

tilevel iteration method developed in [9]. 150

5 Numerical Experiment 151

We now perform a numerical test to show that the preconditioner (17) is an effi- 152

cient and robust preconditioner. We consider the problem with homogenous Dirichlet 153

boundary conditions on the unit square Ω = (0,1)2. The number of PCG iterations 154

for a residual reduction by a factor 108 are shown in Table 1. The subproblems on 155

VI and VII are solved exactly. Additionally, we list the estimated condition numbers 156

κ(BA), obtained from the Lanczos process. 157
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Table 1. Iteration numbers (#it.) and condition numbers (κ(BA)) of the pcg-cycle.

t1.1#DOF 242 1058 4418 18050 72962 293378

t1.2#it. κ #it. κ #it. κ #it. κ #it. κ #it. κ

t1.3ν = 0: 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00
t1.4ν = 0.25: 8 1.41 8 1.48 8 1.53 9 1.55 9 1.57 9 1.57
t1.5ν = 0.4: 10 1.90 11 2.19 12 2.38 12 2.49 13 2.57 13 2.62
t1.6ν = 0.45: 11 2.11 12 2.61 14 3.01 15 3.25 15 3.41 15 3.52
t1.7ν = 0.49: 10 1.90 11 2.54 14 3.31 16 3.97 17 4.39 17 4.69
t1.8ν = 0.499: 9 1.98 10 1.98 11 2.13 14 2.99 15 3.83 17 4.51
t1.9ν = 0.4999: 9 1.99 9 1.99 9 1.99 10 1.99 12 2.43 13 3.34
t1.10ν = 0.49999: 9 1.99 9 1.99 9 2.00 9 2.00 9 2.00 10 2.00

Acknowledgments The authors gratefully acknowledge the support by the Austrian Academy 158

of Sciences and by the Austrian Science Fund (FWF), Project No. P19170-N18 and by the Na- 159

tional Science Foundation NSF-DMS 0810982. 160

Bibliography 161

[1] S.C. Brenner and R.L. Scott. The Mathematical Theory of Finite Element Meth- 162

ods (Texts in Applied Mathematics). Springer, 3rd edition, December 2007. 163

[2] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer- 164

Verlag New York Inc., 1991. 165

[3] R.S. Falk. Nonconforming finite element methods for the equations of linear 166

elasticity. Math. Comp., 57(196):529–550, 1991. 167

[4] I. Georgiev, J.K. Kraus, and S. Margenov. Multilevel preconditioning of 168

Crouzeix-Raviart 3D pure displacement elasticity problems. In I. Lirkov et al., 169

editors, LSSC, volume 5910 of LNCS, pages 103–110. Springer, 2010. 170

[5] M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative 171

Schwarz algorithms. Numer. Math., 70(2):163–180, 1995. 172

[6] P. Hansbo and M.G. Larson. Discontinuous Galerkin and the Crouzeix-Raviart 173

element: application to elasticity. Math. Model. Numer. Anal., 37(1):63–72, 174

2003. 175

[7] R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in H(curl) and 176

H(div) spaces. SIAM J. Numer. Anal., 45(6):2483–2509, 2007. 177

[8] E. Karer and J. K. Kraus. Algebraic multigrid for finite element elasticity equa- 178

tions: Determination of nodal dependence via edge-matrices and two-level con- 179

vergence. Int. J. Numer. Meth. Engng., 83(5):642–670, 2010. 180

[9] J.K. Kraus and S.K. Tomar. Algebraic multilevel iteration method for lowest 181

order Raviart-Thomas space and applications. Int. J. Numer. Meth. Engng., 86 182

(10):1175–1196, 2011. 183



Page 172

UN
CO

RR
EC

TE
D

PR
O
O
F

E. Karer, J. K. Kraus, and L. T. Zikatanov

[10] Y.-J. Lee, J. Wu, J. Xu, and L. T. Zikatanov. Robust subspace correction meth- 184

ods for nearly singular systems. Math. Models Methods Appl. Sci., 17(11): 185

1937–1963, 2007. 186

[11] Y.-J. Lee, J. Wu, and J. Chen. Robust multigrid method for the planar linear 187

elasticity problems. Numerische Mathematik, 113:473–496, 2009. 188

[12] J.W. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. F. McCormick, 189

editor, Multigrid Methods, volume 3 of Frontiers Appl. Math., pages 73–130, 190

Philadelphia, 1987. SIAM. 191

[13] J. Schöberl. Multigrid methods for a parameter dependent problem in primal 192

variables. Numer. Math., 84(1):97–119, 1999. 193

[14] J. Xu. Iterative methods by space decomposition and subspace correction. 194

SIAM Review, 34(4):581–613, 1992. 195

[15] J. Xu. The auxiliary space method and optimal multigrid preconditioning tech- 196

niques for unstructured grids. Computing, 56:215–235, 1996. 197

[16] J. Xu and L. Zikatanov. The method of alternating projections and the method 198

of subspace corrections in Hilbert space. J. Amer. Math. Soc., 15(3):573–597, 199

2002. 200




