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1 Introduction 10

We consider the Helmholtz equation: 11

−Δu∗− k2u∗ = f in Ω (1)

u∗ = gD on ∂ΩD,
∂u∗

∂n
= gN on ∂ΩN ,

∂u∗

∂n
+ iku∗ = gS on ∂ΩS

where Ω is a bounded polygonal region in ℜ2, and the ∂ΩD, ∂ΩN and ∂ΩS corre- 12

spond to subsets of ∂Ω where the Dirichlet, Neumann and Sommerfeld boundary 13

conditions are imposed. 14

The main purpose of this paper is to introduce novel two-level overlapping 15

Schwarz methods for solving the Helmholtz equation. Among the most effective par- 16

allel two-level domain decomposition solvers for the Helmholtz equation on general 17

unstructured meshes, we mention the FETI-H method introduced by Farhat et al. [5], 18

and the WRAS-H-RC method introduced by Kimn and Sarkis [10]. FETI-H type pre- 19

conditioners belong to the class of nonoverlapping domain decomposition methods. 20

FETI-H methods can be viewed as a modification of the original FETI method in- 21

troduced by Farhat et al. [6]. The local solvers in FETI-H are based on Sommerfeld 22

boundary conditions, see [3], while the coarse problem is based on plane waves. 23

WRAS-H-RC type preconditioners belong to the class of overlapping Schwarz 24

methods. They can be viewed as a miscellaneous of several methods to enhance the 25

effectiveness of the solver for Helmholtz problems. The first ingredient of WRAS- 26

H-RC preconditioners is the use of Sommerfeld boundary conditions for the local 27

solvers on overlapping subdomains. This idea is similar to what was done in FETI- 28

H, however, now for the overlapping case. This idea can be found for instance in the 29

work of Cai et al. [2] and Kimn [8]. The second ingredient is the use of the Weighted 30

Restricted Additive Schwarz (WRAS) method introduced by Cai and Sarkis [1] in 31

order to average the local overlapping solutions. The third ingredient is the use of 32
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partition of unity coarse spaces, see [13]. Here we consider the multiplication of a 33

partition of unity times plane waves; see [12]. The fourth ingredient is how to define 34

the coarse problem. It was discovered in [10] that a dramatic gain in performance 35

can be obtained if WRAS techniques are applied to the fine-to-coarse restriction op- 36

erator and the coarse-to-fine prolongation operator. The idea is to force the to act 37

more locally on the fine-to-coarse transference of information and globally on the 38

coarse-to-fine phase. The last ingredient is to put all these pieces together. The idea 39

is to extend the Balancing Domain Decomposition (BDD) methods of Mandel [11], 40

which were originally developed for the nonoverlapping case, to the overlapping 41

case. This extension was introduced in [9] and the methods there were denoted by 42

Overlapping Balancing Domain Decomposition (OBDD) methods. The WRAS-H- 43

RC methods in [10] stand for “WRAS” for the local solvers, “H” for the FETI-H 44

ingredients included in the methods, and “RC” for the restricted flavor of coarse 45

problem. 46

Here in this paper we investigate numerically new techniques to improve further 47

the performance of the WRAS-H-RC. More precisely, the shifted Laplacian tech- 48

niques introduced in [7] and [4], are used to construct novel local solvers. We inves- 49

tigate how the various kinds of shifts affect the performance of the algorithms. As 50

a result, we discover novel preconditioners that are more effective than the existing 51

ones. 52

2 Discrete Formulation of the Problem 53

From a Green’s formula, (1) can be reduced to: Find u∗ −u∗D ∈ H1
D(Ω) such that, 54

a(u∗,v) =
∫

Ω
(∇u∗ ·∇v̄− k2u∗v̄)dx+ ik

∫
∂ΩS

u∗v̄ ds (2)

=

∫
Ω

f v̄ dx+
∫

∂ΩN

gNv̄ds+
∫

∂ΩS

gSv̄ = F(v), ∀v ∈ H1
D(Ω),

where u∗D is an extension of gD to H1(Ω), and H1
D(Ω) is the space of H1(Ω) func- 55

tions vanishing on ∂ΩD. 56

57

Let Th(Ω) be a quasi-uniform triangulation of Ω and let V ⊂ H1
D(Ω) be the 58

finite element space of continuous piecewise linear functions vanishing on ∂ΩD. We 59

assume that gD on ∂ΩD is a piecewise linear continuous function on T h(∂ΩD) and 60

we have eliminated gD by a discrete trivial zero extension inside Ω . We then obtain 61

a discrete problem of the following form: Find u ∈V such that 62

a(u,v) = f (v), ∀ v ∈V. (3)

Using the standard hat basis functions, (3) can be rewritten as a linear system of 63

equations of the form 64

Au = f . (4)
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3 Description of the WRAS-H-RC Methods 65

3.1 Partitioning and Subdomains 66

Given the triangulation T h(Ω), we assume that a domain partition by elements has 67

been applied and resulted in N nonoverlapping subdomains Ωi, i = 1, . . .N, such that 68

Ω = ∪N
i=1Ω i and Ωi∩Ω j = /0, for j �= i. 69

Let δ be a nonnegative integer. Define Ω 0
i = Ωi. For δ ≥ 1, define the overlapping 70

subdomains Ω δ
i as follows: let Ω 1

i be the one-overlap element extension of Ω 0
i by 71

including all the immediate neighboring elements τh ∈T h(Ω) such that τh∩Ω 0
i �= /0. 72

Using this idea recursively, we can define a δ -extension overlapping subdomains Ω δ
i 73

Ωi = Ω 0
i ⊂Ω 1

i ⊂ ·· · ⊂Ω δ
i · · · 74

3.2 Partition of the Unity 75

Let w be a nonnegative integer. For nodes x on ∂Ω 0
i define ϑ̂ w

i (x) = 1, for nodes x on 76

∂Ω 1
i \Ω

0
i define ϑ̂ w

i (x) = 1−1/(w+1), for nodes x on ∂Ω 2
i \Ω

1
i define ϑ̂ w

i (x) = 1− 77

2/(w+1), and recursively until ϑ̂ w
i (x) = 0. For nodes x in Ω\Ω w

i define ϑ̂ w
i (x) = 0. 78

The partition of unity ϑ w
i is defined as 79

ϑ w
i = Ih(

ϑ̂ w
i

∑N
j=1 ϑ̂ w

j

) i = 1, · · · ,N, 80

where Ih is the nodal piecewise linear interpolant on T h(Ω ). Note that the support 81

of ϑ w
i is Ω w+1

i and |∇ϑ w
i | ≤O((w+1)/h). We define the weighting diagonal matrix 82

Dw
i as equal to ϑ w

i (x) at the nodes x of Ω . 83

3.3 Local Problems 84

Let us denote by V δ
i , i = 1, · · · ,N, the local space of functions in H1(Ω δ

i ) which are 85

continuous piecewise linear and vanishes only on ∂Ω δ
i ∩∂ΩD. For each subdomain 86

Ω δ
i , let Rδ

i : V → V δ
i be the regular restriction operator on V δ

i , that is, vi(x) = v(x) 87

for nodes x ∈Ω δ
i . 88

89

For the local solvers, we respect the original boundary condition and impose 90

Sommerfeld boundary condition on the interior boundaries ∂Ω δ
i \∂Ω . The associ- 91

ated local projections in matrix form are defined by 92

T δ
i,W RAS−H = (Rδ

i Dδ
i )

T (Ãδ
i )
−1Rδ

i A i = 1, · · · ,N (5)

where Ãδ
i are the matrix form of 93

ãδ
i (ui,vi) =

∫
Ωδ

i

(∇ui ·∇vi− k2uivi)dx+ ik
∫

∂Ωδ
i \(∂ΩD∪∂ΩN)

uivi ds. (6)
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3.4 Coarse Problem 94

Let c be a nonnegative integer. The coarse space V c,p
0 ∈ V is defined as the space 95

spanned by Dc
i QD

j for i = 1, . . . ,N and j = 1, · · · ,p. Here, Q j := eikηT
j x, where 96

η j = (cos(θ j),sin(θ j)), with θ j = ( j−1)× π
p , j = 1, · · · ,p, while QD

j (x) :=Q j(x) for 97

nodes x ∈ Ω\∂ΩD and QD
j (x) := 0 for nodes x on ∂ΩD. The coarse-to-fine prolon- 98

gation matrix (Ec,p
0 ) consists of columns Dδ

i QD
j , while the fine-to-coarse restriction 99

matrix Rδ ,p
0 consists of rows (Rδ

i )
T Rδ

i QD
j . The first coarse problem we consider in 100

this paper is given by 101

Pδ ,c,p
0,RC = Ec,p

0 [Rδ ,p
0 AEc,p

0 ]−1Rδ ,p
0 . (7)

3.5 Hybrid Preconditioners 102

The first preconditioner we consider is given by 103

T δ ,c,p
WRAS−H−RC := Pδ ,c,p

0,RC +(I−Pδ ,c,p
0,RC )(

N

∑
i=1

T δ
i,W RAS−H)(I−Pδ ,c,p

0,RC ). (8)

Because Pδ ,c,p
0,RC is a projection, only one coarse problem solver is necessary per itera- 104

tion of the iterative method. 105

106

Other hybrid preconditioners can also be designed. For instance, we can replace 107

the local problem T δ
i,WRAS by 108

Pδ
i,OBDD−H := (Rδ

i Dδ
i )

T (Ãδ
i )
−1Rδ

i Dδ
i A 109

or/and replace the coarse problem Pδ ,c,p
0,RC by something more classical such as 110

Pc,p
0 = Ec,p

0 [(Ec,p
0 )T AEc,p

0 ]−1(Ec,p
0 )T . 111

Inserting these operators properly into (7) we obtain preconditioners which we 112

denote by T δ ,c,p
W RAS−H , T δ ,c,p

OBDD−H or T δ ,c,p
OBDD−H−RC. An interesting structure that 113

T δ ,c,p
WRAS−H−RC has, and the others do not, is that the same restriction operators Rδ

i are 114

used to compute the right-hand side for both the local and coarse problems, therefore, 115

computational efficiency can be explored. 116

4 Shifted Local Operators 117

The matrix Ãδ
i obtained from the bilinear form (6) can be written as 118

Ãδ
i = Aδ

i − k2Mδ
i + ikBδ

i , 119

where Aδ
i , Mδ

i , and Bδ
i are the corresponding matrices associated to 120
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∫

Ωδ
i

∇ui ·∇vi dx+ ik
∫

∂Ωδ
i ∩∂ΩS

uivi ds,
∫

Ωδ
i

uivi dx and
∫

∂Ωδ
i \∂Ω

uivi ds, 121

respectively. We note that the local matrix Aδ
i −k2Mδ

i is singular if k2 is a generalized 122

eigenvalue of Aδ
i . Alternatively, if we enforce zero Dirichlet boundary condition on 123

the interior boundaries ∂Ωi∩Ω δ
i , singularities also might occurs, specially when the 124

subdomains are not small enough. The Sommerfeld term plays the rule of shifting 125

the real spectrum of Aδ
i − k2Mδ

i to the upper part of the complex plane, therefore, 126

elliminating possible zero eigenvalues. More general shifts were introduced recently 127

by Gijzen et al. [7] and Erlangga et al. [4] to move the spectrum to a disk on the first 128

quadrant. Inspired by this work, we now consider shifts to define the local solvers as 129

Ãδ
i (αr,αi,βr,βi) = Aδ

i +(αr + iαi)k
2Mδ

i +(βr + iβi)kBδ
i , (9)

that is, the local Laplacians Aδ
i are shifted by a complex combination of Mδ

i and Bδ
i . 130

Note that Ãδ
i (−1,0,0,1) reduces to the original local solver (6), while Ãδ

i (−1,0,0,0) 131

to Aδ
i − k2Mδ

i . 132

5 Numerical Results 133

As a numerical test, we consider a wave guided problem for solving the Helmholtz 134

equation on the unit square. We consider homogeneous Neumann boundary condi- 135

tion on the horizontal sides, homogeneous Sommerfeld on the right vertical side, and 136

a constant identical to one Dirichlet on the left vertical side. The stopping criteria for 137

the PGMRES is to reduce the initial residual by a factor of 10−6. In all tests the right 138

preconditioner is applied. 139

140

The triangulation is composed of Courant elements of mesh size h = 1/256. The 141

nonoverlapping subdomains Ω 0
i are squares of size 1/M, and the number of subdo- 142

mains is denoted by nsub = M×M. The pair (δ ,c) refers to how many layers of 143

elements are used to define the extension of the overlapping subdomains Ω δ
i and the 144

extension of the support of the coarse basis functions, respectively. The constant k 145

refers to the wave number and p denotes the number of local plane waves used in 146

the coarse space. Table 1 shows that the method PWRAS−H−RC is the most effective 147

method among those introduced in Sect. 3.5. Table 2 shows that we should select 148

the support for the coarse basis functions larger enough, larger than the size of the 149

extended subdomains. Tables 1 and 2 show that the number of iterations decreases 150

when we increase the size of the overlap. 151

152

We now test the effectiveness of PWRAS−H−RC for several combinations of local 153

solvers Ãδ
i (αr,αi,βr,βi). Table 3 shows results for δ = 2 and Table 4 for δ = 0. 154

We can see from Tables 3 and 4 that the number of iterations using the original 155

local problem are 13 and 34, respectively. It is very surprising and interesting to ob- 156

serve that the number of iterations are 9 and 18 for the combination (0,1,1,0), a 157



Page 160

UN
CO

RR
EC

TE
D

PR
O
O
F

Jung-Han Kimn and Marcus Sarkis

respectable gain in efficiency. Tables 3 and 4 reveal that there exist more effective 158

choices for local solvers rather than the common choice approach of adding a Som- 159

merfeld term on the interior boundary of the subdomains. These preliminary results 160

are very inspiring and encouraging for further numerical and theoretical investiga- 161

tions. 162

Table 1. The Guided Wave Problem, Sommerfeld boundary condition on interior subdomain
boundaries, n = 257, nsub = 64(8×8), Tol=10−6, k = 20

(δ ,c,p) (0,7,4) (1,7,4) (2,7,4)
OBDD−H 158 85 43
WRAS−H 150 74 36
OBDD−H−RC 40 23 16
WRAS−H−RC 34 19 13

Table 2. WRAS-H-RC The Guided Wave Problem, Sommerfeld boundary condition on in-
terior subdomain boundaries, n = 257, nsub = 64(8×8), p = 4, Tol=10−6, k = 20

WRAS-H-RC
c= 1 2 3 4 5 6 7 8
δ =0 78 67 54 46 40 37 34 32
δ =1 190 36 31 25 22 21 19 18
δ =2 181 181 19 18 16 14 13 12

Table 3. The Guided Wave Problem, WRAS-H-RC algorithm with Shifted Laplacian local
problems, n = 257, nsub = 64, Tol=10−6, p = 4, k = 20, c = 7, δ = 2AQ1

tαr = -1 -1 -1 0 0 0 1 1 1
tαi = -1 0 1 -1 0 1 -1 0 1
tβr =−1 βi =−1 37 53 116 22 28 210 17 22 48
tβr =−1 βi = 0 236 123 199 154 275 139 105 300* 138
tβr =−1 βi = 1 66 34 28 227 24 16 55 22 17
tβr = 0 βi =−1 20 23 62 14 14 20 12 11 12
tβr = 0 βi = 0 19 16 13 17 300* 12 14 13 10
tβr = 0 βi = 1 55 13 13 23 13 11 15 12 11
tβr = 1 βi =−1 15 12 12 13 10 10 12 10 9
tβr = 1 βi = 0 13 17 11 12 10 9 12 10 8
tβr = 1 βi = 1 17 10 11 12 10 9 11 10 9
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Table 4. The Guided Wave Problem, WRAS-H-RC algorithm with Shifted Laplacian local
problems, n = 257, nsub = 64, Tol=10−6, p = 4, k = 20, c = 7, δ = 0

t4.1αr = -1 -1 -1 0 0 0 1 1 1
t4.2αi = -1 0 1 -1 0 1 -1 0 1
t4.3βr =−1 βi =−1 168 213 300* 99 168 300* 69 106 300*
t4.4βr =−1 βi = 0 291 207 243 238 300* 209 221 300* 300*
t4.5βr =−1 βi = 1 300* 137 101 300* 130 63 300* 107 67
t4.6βr = 0 βi =−1 55 69 289 38 42 80 34 30 32
t4.7βr = 0 βi = 0 45 31 30 38 300* 27 34 24 24
t4.8βr = 0 βi = 1 279 34 33 94 39 30 40 35 31
t4.9βr = 1 βi =−1 34 31 39 29 25 22 27 24 21
t4.10βr = 1 βi = 0 27 22 21 24 20 18 24 21 20
t4.11βr = 1 βi = 1 51 23 21 25 21 20 23 21 21
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