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Summary. This paper is devoted to the construction and analysis of robust solution tech- 9

niques for time-harmonic eddy current problems in unbounded domains. We discretize the 10

time-harmonic eddy current equation by means of a symmetrically coupled finite and boundary 11

element method, taking care of the different physical behavior in conducting and non- 12

conducting subdomains, respectively. We construct and analyse a block-diagonal precondi- 13

tioner for the system of coupled finite and boundary element equations that is robust with 14

respect to the space discretization parameter as well as all involved “bad” parameters like the 15

frequency, the conductivity and the reluctivity. Block-diagonal preconditioners can be used 16

for accelerating iterative solution methods such like the Minimal Residual Method. 17

1 Introduction 18

In many practical applications, the excitation is time-harmonic. Switching from the 19

time domain to the frequency domain allows us to replace expensive time-integration 20

procedures by the solution of a system of partial differential equations for the am- 21

plitudes belonging to the sine- and to the cosine-excitation. Following this strat- 22

egy, [7, 13] and [4, 5] applied harmonic and multiharmonic approaches to parabolic 23

initial-boundary value problems and the eddy current problem, respectively. Indeed, 24

in [13], a preconditioned MinRes solver for the solution of the eddy current problem 25

in bounded domains was constructed that is robust with respect to both the discretiza- 26

tion parameter h and the frequency ω . The key point of this parameter-robust solver 27

is the construction of a block-diagonal preconditioner, where standard H(curl) FEM 28

magneto-static problems have to be solved or preconditioned. The aim of this con- 29

tribution is to generalize these ideas to the case of unbounded domains in terms of 30

a coupled Finite Element (FEM) – Boundary Element (BEM) Method. In this case 31

we are also able to construct a block-diagonal preconditioner, where now standard 32

coupled FEM-BEM H(curl) problems, as arising in the magneto-static case, have 33

to be solved or preconditioned. We mention, that this preconditioning technique fits 34

into the framework of operator preconditioning, see, e.g. [1, 11, 16, 19]. 35
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The paper is now organized as follows. We introduce the frequency domain 36

equations in Sect. 2. In the same section, we provide the symmetrically coupled 37

FEM-BEM discretization of these equations. In Sect. 3, we construct and analyse our 38

parameter-robust block-diagonal preconditioner used in a MinRes setting for solving 39

the resulting system of linear algebraic equations. Finally, we discuss the practical 40

realization of our preconditioner. 41

2 Frequency Domain FEM-BEM 42

As a model problem, we consider the following eddy current problem: 43

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ ∂u
∂ t + curl (ν1 curl u) = f in Ω1× (0,T),

curl(curl u) = 0 in Ω2× (0,T),
divu = 0 in Ω2× (0,T),

u = O(|x|−1) for |x| → ∞,
curlu = O(|x|−1) for |x| → ∞,

u = u0 on Ω1×{0},
u1×n = u2×n on Γ × (0,T ),

ν1curlu1×n = curlu2×n on Γ × (0,T ),

(1)

where the computational domain Ω = R
3 is split into the two non-overlapping sub- 44

domains Ω1 and Ω2. The conducting subdomain Ω1 is assumed to be a simply 45

connected Lipschitz polyhedron, whereas the non-conducting subdomain Ω2 is the 46

complement of Ω1 in R
3, i.e R3\Ω 1. Furthermore, we denote by Γ the interface be- 47

tween the two subdomains, i.e. Γ = Ω 1∩Ω 2. The exterior unit normal vector of Ω1 48

on Γ is denoted by n, i.e. n points from Ω1 to Ω2. The reluctivity ν1 is supposed to be 49

independent of |curlu|, i.e. we assume the eddy current problem (1) to be linear. The 50

conductivity σ is zero in Ω2, and piecewise constant and uniformly positive in Ω1. 51

We assume, that the source f is given by a time-harmonic excitation with the 52

frequency ω > 0 and amplitudes fc and fs in the conducting domain Ω1. Therefore, 53

the solution u is time-harmonic as well, with the same base frequency ω , i.e. 54

u(x, t) = uc(x)cos(ωt)+us(x)sin(ωt). (2)

In fact, (2) is the real reformulation of a complex time-harmonic approach u(x, t) = 55

û(x)eiωt with the complex-valued amplitude û = uc− ius. Using the time-harmonic 56

representation (2) of the solution, we can state the eddy current problem (1) in the 57

frequency domain as follows: 58

Find u = (uc,us) :

⎧⎪⎪⎨
⎪⎪⎩

ω σ us + curl (ν1 curl uc) = fc in Ω1,
curlcurl uc = 0 in Ω2,

−ω σ uc + curl (ν1 curl us) = fs in Ω1,
curlcurl us = 0 in Ω2,

(3)

with the corresponding decay and interface conditions from (1). 59
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Remark 1. In practice, the reluctivity ν1 depends on the inductivity |curlu| in a non- 60

linear way in ferromagnetic materials. Having in mind applications to problems with 61

nonlinear reluctivity, we prefer to use the real reformulation (3) instead of a complex 62

approach. For overcoming the nonlinearity the preferable way is to apply Newton’s 63

method due to its fast convergence. It turns out, that Newton’s method cannot be ap- 64

plied to the nonlinear complex-valued system (see [4]), but it can be applied to the 65

reformulated real-valued system. Anyhow, the analysis of the linear problem also 66

helps to construct efficient solvers for the nonlinear problem. 67

Deriving the variational formulation and integrating by parts once more in the exte- 68

rior domain yields: Find (uc,us) ∈H(curl,Ω1)
2 such that 69

{
ω(σus,vc)L2(Ω1) + (ν1curluc,curlvc)L2(Ω1)−〈γNuc,γDvc〉τ = 〈fc,vc〉,
−ω(σuc,vs)L2(Ω1) + (ν1curlus,curlvs)L2(Ω1)−〈γNus,γDvs〉τ = 〈fs,vs〉,

for all (vc,vs) ∈ H(curl,Ω1)
2. Here γD and γN denote the Dirichlet trace γD := n× 70

(u×n) and the Neumann trace γN := curlu×n on the interface Γ . 〈·, ·〉τ denotes the 71

L2(Γ )-based duality product. In order to deal with the expression on the interface 72

Γ , we use the framework of the symmetric FEM-BEM coupling for eddy current 73

problems (see [10]). So, using the boundary integral operators A, B, C and N, as 74

defined in [10], we end up with the weak formulation of the time-harmonic eddy 75

current problem: Find (uc,us) ∈ H(curl,Ω1)
2 and (λ c,λ s) ∈ H

− 1
2
‖ (divΓ 0,Γ )2 such 76

that 77⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(σus,vc)L2(Ω1)+(ν1curluc,curlvc)L2(Ω1),

−〈N(γDuc),γDvc〉τ + 〈B(λ c),γDvc〉τ = 〈fc,vc〉,
〈μc,(C− Id)(γDuc)〉τ −〈μc,A(λ c)〉τ = 0,

−ω(σuc,vs)L2(Ω1)+(ν1curlus,curlvs)L2(Ω1),

−〈N(γDus),γDvs〉τ + 〈B(λ s),γDvs〉τ = 〈fs,vs〉,
〈μ s,(C− Id)(γDus)〉τ −〈μ s,A(λ s)〉τ = 0,

(4)

for all (vc,vs) ∈H(curl,Ω1)
2 and (μc,μ s) ∈H

− 1
2
‖ (divΓ 0,Γ )2. This variational form 78

is the starting point of the discretization in space. Therefore, we use a regular trian- 79

gulation Th, with mesh size h > 0, of the domain Ω1 with tetrahedral elements. Th 80

induces a mesh Kh of triangles on the boundary Γ . On these meshes, we consider 81

Nédélec basis functions of order p yielding the conforming finite element subspace 82

N D p(Th) of H(curl,Ω1), see [17]. Further, we use the space of divergence free 83

Raviart-Thomas basis functions RT 0
p(Kh) := {λh ∈RT p(Kh),divΓ λh = 0} being 84

a conforming finite element subspace of H
− 1

2
‖ (divΓ 0,Γ ). Let {ϕi} denote the basis 85

of N D p(Th), and let {ψi} denote the basis of RT 0
p(Kh). Then the matrix entries 86

corresponding to the operators in (4) are given by the formulas 87
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(K)i j := (ν curlϕi,curlϕj)L2(Ω1)−〈N(γDϕi),γDϕj〉τ ,
(M)i j := ω(σϕi,ϕj)L2(Ω1),

(A)i j :=
〈
ψi,A(ψj)

〉
τ ,

(B)i j := 〈ψi,(C− Id)(γDϕj)〉τ .

The entries of the right-hand side vector are given by the formulas (fc)i := 88

(fc,ϕi)L2(Ω1) and (fs)i := (fs,ϕi)L2(Ω1). The resulting system A x = f of the coupled 89

finite and boundary element equations has now the following structure: 90

⎛
⎜⎜⎝

M 0 K BT

0 0 B −A
K BT −M 0
B −A 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

us

λ s

uc

λ c

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

fc

0
fs

0

⎞
⎟⎟⎠ . (5)

In fact, the system matrix A is symmetric and indefinite and obtains a double 91

saddle-point structure. Since A is symmetric, the system can be solved by a Min- 92

Res method, see, e.g., [18]. Anyhow, the convergence rate of any iterative method 93

deteriorates with respect to the meshsize h and the “bad” parameters ω , ν and σ , 94

if applied to the unpreconditioned system (5). Therefore, preconditioning is a chal- 95

lenging topic. 96

3 A Parameter-Robust Preconditioning Technique 97

In this section, we investigate a preconditioning technique for double saddle-point 98

equations with the block-structure (5). Due to the symmetry and coercivity properties 99

of the underlying operators, the blocks fulfill the following properties: K = KT ≥ 0, 100

M = MT > 0 and A = AT > 0. 101

In [19] a parameter-robust block-diagonal preconditioner for the distributed opti- 102

mal control of the Stokes equations is constructed. The structural similarities to that 103

preconditioner gives us a hint how to choose the block-diagonal preconditioner in 104

our case. Therefore, we propose the following preconditioner 105

C = diag (IFEM,IBEM,IFEM,IBEM) ,

where the diagonal blocks are given by IFEM =M+K and IBEM =A+BI −1
FEMBT . 106

Being aware that IFEM and IBEM are symmetric and positive definite, we conclude 107

that C is also symmetric and positive definite. Therefore, C induces the energy norm 108

‖u‖C =
√

uT C u. Using this special norm, we can apply the Theorem of Babuška- 109

Aziz [3] to the variational problem: 110

Find x ∈ R
N : wT A x = wT f, ∀w ∈R

N .

The main result is now summarized in the following lemma. 111
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Lemma 1. The matrix A satisfies the following norm equivalence inequalities: 112

1√
7
‖x‖C ≤ sup

w�=0

wT A x
‖w‖C ≤ 2‖x‖C ∀x ∈ R

N .

Proof. Throughout the proof, we use the following notation: x = (x1,x2,x3,x4)
T

113

and y = (y1,y2,y3,y4)
T . The upper bound follows by reapplication of Cauchy’s in- 114

equality several time. The expressions corresponding to the Schur complement can 115

be derived in the following way: 116

y1
T BT x4 = y1I

1/2
FEMI

−1/2
FEM BT x4 ≤ ‖I 1/2

FEMy1‖l2‖I −1/2
FEM BT x4‖l2 .

Therefore, we end up with an upper bound with constant 2. 117

In order to compute the lower bound, we use a linear combination of special test 118

vectors. For the choice w1 = (x1,x2,−x3,−x4)
T , we obtain 119

w1
T A x = x1

T Mx1 + x3
T Mx3;

for w2 = (x3,−x4,x1,−x2)
T , we get 120

w2
T A x = x1

T Kx1 + x3
T Kx3 + x2

T Ax2 + x4
T Ax4;

for w3 = ((x4
T B(K+M)−1)T ,0,(x2

T B(K+M)−1)T ,0)T , we have 121

w3
T A x = x4

T B(K+M)−1BT x4 + x2
T B(K+M)−1BT x2

+ x4
T B(K+M)−1Mx1 + x4

T B(K+M)−1Kx3

+ x2
T B(K+M)−1Kx1−x2

T B(K+M)−1Mx3;

for w4 = (−(x3
T K(K+M)−1)T ,0,−(x1

T K(K+M)−1)T ,0)T , we get 122

w4
T A x =−x3

T K(K+M)−1Mx1−x3
T K(K+M)−1Kx3

−x3
T K(K+M)−1BT x4−x1

T K(K+M)−1Kx1

−x1
T K(K+M)−1BT x2 + x1

T K(K+M)−1Mx3;

and, finally, for the choice w5 =(−(x1
T M(K+M)−1)T ,0,(x3

T M(K+M)−1)T ,0)T , 123

we obtain 124

w5
T A x =−x1

T M(K+M)−1Mx1−x1
T M(K+M)−1Kx3

−x1
T M(K+M)−1BT x4 + x3

T M(K+M)−1Kx1

+ x3
T M(K+M)−1BT x2−x3

T M(K+M)−1Mx3.

Therefore, we end up with the following expression 125
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(w1 +w2 +w3 +w4 +w5)
T A x = x1

T Mx1 + x3
T Mx3

+ x1
T Kx1 + x3

T Kx3 + x2
T Ax2 + x4

T Ax4

+ x4
T B(K+M)−1BT x4 + x2

T B(K+M)−1BT x2

−x3
T K(K+M)−1Kx3−x1

T K(K+M)−1Kx1

−x3
T M(K+M)−1Mx3−x1

T M(K+M)−1Mx1

−2x3
T K(K+M)−1Mx1 + 2x1

T K(K+M)−1Mx3.

For estimating the non-symmetric terms, we use the following result: 126

−2x3
T K(K+M)−1Mx1 ≥−2‖(K+M)−1/2Kx3‖l2‖(K+M)−1/2Mx1‖l2

≥−‖(K+M)−1/2Kx3‖2
l2−‖(K+M)−1/2Mx1‖2

l2

=−x3
T K(K+M)−1Kx3−x1

T M(K+M)−1Mx1.

Analogously, we obtain 127

2x1
T K(K+M)−1Mx3 ≥−x1

T K(K+M)−1Kx1−x3
T M(K+M)−1Mx3.

Hence, putting all terms together, we have 128

(w1 +w2 +w3 +w4 +w5)
T A x = xT C x

−2x3
T K(K+M)−1Kx3−2x1

T K(K+M)−1Kx1

−2x3
T M(K+M)−1Mx3−2x1

T M(K+M)−1Mx1.

In order to get rid of the four remaining terms, we use, for i = 1,3, 129

xi
T K(K+M)−1Kxi ≤ xi

T Kxi and xi
T M(K+M)−1Mxi ≤ xi

T Mxi.

Hence by adding w1 and w2 twice more, we end up with the desired result 130

(3w1 + 3w2 +w3 +w4 +w5)
T︸ ︷︷ ︸

:=wT

A x≥ xT C x+ x2
T Ax2 + x4

T Ax4 ≥ xT C x.

The next step is to compute (and estimate) the C norm of the special test vector. 131

Straightforward estimations yield 132

‖w‖2
C = ‖3w1 + 3w2 +w3 +w4 +w5‖2

C ≤ 7‖x‖2
C .

This completes the proof. 133

Now, from Lemma 1, we obtain that the condition number of the preconditioned 134

system can be estimated by the constant c = 2
√

7 that is obviously independent of 135

the meshsize h and all involved parameters ω , ν and σ , i.e. 136

κC (C
−1A ) := ‖C−1A ‖C ‖A −1C ‖C ≤ 2

√
7. (6)

The condition number defines the convergence behaviour of the MinRes method 137

applied to the preconditioned system (see e.g. [9]), as stated in the following theorem: 138

139
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Theorem 1 (Robust solver). The MinRes method applied to the preconditioned sys- 140

tem C−1A u = C −1f converges. At the 2m-th iteration, the preconditioned residual 141

rm = C −1f−C−1A um is bounded as 142

∥∥∥r2m
∥∥∥

C
≤ 2qm

1+ q2m

∥∥∥r0
∥∥∥

C
, where q =

2
√

7−1

2
√

7+ 1
. (7)

4 Conclusion, Outlook and Acknowledgments 143

The method developed in this work shows great potential for solving time-harmonic 144

eddy current problems in an unbounded domain in a robust way. The solution of a 145

fully coupled 4×4 block-system can be reduced to the solution of a block-diagonal 146

matrix, where each block corresponds to standard problems. We mention, that by 147

analogous procedure, we can state another robust block-diagonal preconditioner C̃ = 148

diag (ĨFEM,ĨBEM,ĨFEM,ĨBEM), with ĨFEM = M+K+BT Ĩ −1
BEMB and ĨBEM = 149

A, leading to a condition number bound of 4, see e.g. [15]. 150

Of course this block-diagonal preconditioner is only a theoretical one, since the 151

exact solution of the diagonal blocks corresponding to a standard FEM discretized 152

stationary problem and the Schur-complement of a standard FEM-BEM discretized 153

stationary problem are still prohibitively expensive. Nevertheless, as for the FEM 154

discretized version in [13], this theoretical preconditioner allows us replace the solu- 155

tion of a time-dependent problem by the solution of a sequence of time-independent 156

problems in a robust way, i.e. independent of the space and time discretization pa- 157

rameters h and ω and all additional “bad” parameters. Therefore, the issue of finding 158

robust solvers for the fully coupled time-harmonic system matrix A can be reduced 159

to finding robust solvers for the blocks IFEM and IBEM, or ĨFEM and ĨBEM. By 160

replacing these diagonal blocks by standard preconditioners, it is straight-forward 161

to derive mesh-independent convergence rates, see, e.g., [8]. Unfortunately, the con- 162

struction of fully robust preconditioners for the diagonal blocks is not straight for- 163

ward and has to be studied. Candidates are H matrix, multigrid multigrid and do- 164

main decomposition preconditioners, see, e.g. [2, 6] and [12], respectively. 165

The preconditioned MinRes solver presented in this paper can also be generalized 166

to eddy current optimal control problems studied in [14] for the pure FEM case in 167

bounded domains. 168
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