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Summary. We review our results obtained by application of the TFETI domain decomposi- 8

tion method to implement the time step of the Newmark scheme for the solution of transient 9

contact problems without friction. If the ratio of the decomposition and discretization param- 10

eters is kept uniformly bounded as well as the ratio of the time and space discretization, then 11

the cost of the time step is proved to be proportional to the number of nodal variables. The 12

algorithm uses our MPRGP algorithm for the solution of strictly convex bound constrained 13

quadratic programming problems with optional preconditioning by the conjugate projector 14

to the subspace defined by the trace of the rigid body motions on the artificial subdomain 15

interfaces. The optimality relies on our results on quadratic programming, the theory of the 16

preconditioning by a conjugate projector for nonlinear problems, and the classical bounds 17

on the spectrum of the mass and stiffness matrices. The results are confirmed by numerical 18

solution of 3D transient contact problems. 19

1 Introduction 20

The transient multibody contact problems are important in many applications aris- 21

ing in mechanical or civil engineering. However, it is not easy to provide a useful 22

solution to realistic problems. The reasons include the lack of smoothness, which 23

puts high demand on the construction of effective time discretization schemes, the 24

strong nonlinearity arising from the non-interpenetration boundary conditions, and 25

large dimension of the problems resulting from the space discretization. These com- 26

plications stimulated extensive research activities both from the theoretical point of 27

view (see, e.g., [4]), or the numerical point of view (see, e.g., [10], or [11]). 28

Numerical solution of transient contact problems usually comprises several steps. 29

Starting from a week formulation of the conditions of equilibrium and boundary 30

conditions, the problem is first discretized in space by the finite element method in 31

a similar way as the related static problem. The resulting semidiscrete problem is then 32

discretized by a suitable time discretization scheme. The time integration requires a 33

special attention to guarantee stability of the algorithm and to avoid non-physical 34

oscillations that result from application of the standard time discretization methods 35

for unconstrained problems. Such schemes were proposed by many authors (see [6, 36
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7, 9, 10]). In our approach, we use a combination of the standard finite element space 37

discretization with the contact stabilized Newmark scheme introduced by Krause and 38

Walloth [9] that reduces the solution of the transient contact problem to a sequence 39

of strictly convex quadratic programming (QP) problems with inequality constraints 40

that describe the non-interpenetration conditions. 41

The final step amounts to the solution of QP problems of large dimension, pos- 42

sibly with millions of nodal variables and many inequality constraints. In this paper 43

we propose to resolve the auxiliary problems by our variant of the FETI domain de- 44

composition method called TFETI (total finite element tearing and interconnecting, 45

Dostál et al. [1]). Our research has been motivated by our recent results in develop- 46

ment of optimal algorithms for the frictionless static problems [1] that combine ef- 47

fective FETI preconditioning of both linear and nonlinear steps with our algorithms 48

for the solution of bound constrained QP problems [3]. An important feature of our 49

QP algorithms is the error estimate in terms of the bound on the condition number of 50

the Hessian matrix of the cost function. 51

2 Transient Contact Problem and Its Discretization Using TFETI 52

The starting point of our exposition is the discretized transient multibody contact 53

problem resulting from application of our TFETI domain decomposition. The reason 54

is that a little is known about the solvability of the weak formulation of the transient 55

contact problem (see, e.g., [4]), so we shall assume in what follows that its solution 56

u exists. Moreover, we shall assume that u is sufficiently smooth so that ü exists in 57

some reasonable sense and can be approximated by finite differences. More specific 58

choice of the solution space can be found, e.g., in [4] or in [6]. 59

To discretize the multibody contact problem using TFETI, we tear each body 60

from the part of the boundary with the Dirichlet boundary conditions, decompose 61

each body into subdomains, assign each subdomain a unique number, and introduce 62

new “gluing” conditions on the artificial subdomain interfaces and on the boundaries 63

with imposed Dirichlet conditions. We denote the subdomains and their number by 64

Ω p and s, respectively. The gluing conditions require continuity of the displacements 65

and of their normal derivatives across the subdomain interfaces. The procedure is the 66

same as that for the static problem, [1]. 67

Using finite element discretization in space we get the following semidiscrete 68

problem at time τ 69

Mü+Ku = f−BT
I λλλ T

I −BT
Eλλλ E , (1)

BIu≤ cI, BE u = cE , λλλ I ≥ o, λλλ T (Bu− c) = 0, (2)

with the discrete Newton equation of motion (1) and the equality and inequality con- 70

straints (2) resulting from the gluing, Dirichlet, and non-interpenetration conditions 71

enforced by Lagrange multipliers. 72

The TFETI based finite element semi-discretization in space of the subdomains 73

Ω p, p = 1, . . . ,s, results in the block diagonal stiffness matrix K = diag(K1, . . . ,Ks) 74
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of the order n with the sparse positive semidefinite diagonal blocks Kp that corre- 75

spond to the subdomains Ω p. The same structure has a positive definite mass matrix 76

M = diag(M1, . . . ,Ms). The decomposition induces also the block structure of the 77

vector of nodal forces f = fτ ∈ R
n at time τ and the vector of nodal displacements 78

u = uτ ∈ R
n at time τ . 79

The matrix BI ∈ R
mI×n and the vector cI ∈ R

mI describe the linearized non- 80

interpenetration conditions and the matrix BE ∈ R
mE×n and the vector cE ∈ R

mE 81

enforce the prescribed zero displacements on the part of the boundary with imposed 82

Dirichlet condition and the continuity of the displacements across the auxiliary in- 83

terfaces. 84

Finally, λλλ I ∈RmI and λλλ E ∈RmE denote the components of the vector of Lagrange 85

multipliers λλλ = λλλ τ ∈ R
m, m = mI +mE at time τ . We use the notation 86

λλλ =

[
λλλ I

λλλ E

]
, B =

[
BI

BE

]
, and c =

[
cI

cE

]
. (3)

For the time discretization, we use the contact-stabilized Newmark scheme intro- 87

duced by Krause and Walloth [9] with the regular partition of the time interval [0,T ], 88

0 = τ0 < τ1 . . . < τnT = T, τk = kΔ , Δ = T/nT , k = 0, . . . ,nT . The scheme 89

assumes that the acceleration vector is split at time τk into two components 90

ük = üint
k + ücon

k , üint
k = M−1 (fk−Kuk) , and ücon

k =−M−1BT λλλ k. (4)

We obtain the solution algorithm in the form 91

92

Algorithm 2.1 Contact-stabilized Newmark algorithm. 93

Step 0. {Initialization} 94

Set u0, u̇0, K̃ = 4
Δ 2 M+K, T > 0, nT ∈N, and Δ = T/nT . 95

for k = 0, . . . ,nT −1 do 96

Step 1. {Predictor displacement computation} 97

min

[
1
2

(
upred

k+1

)T
Mupred

k+1 −
(

Muk +ΔMu̇k−BT λλλ pred
k

)T
upred

k+1

]
98

subject to BIu
pred
k+1 ≤ cI, and BE upred

k+1 = cE 99

Step 2. {Contact-stabilized displacement computation} 100

min

[
1
2 uT

k+1K̃uk+1−
(

4
Δ 2 Mupred

k+1 −Kuk + fk + fk+1−BT λλλ k

)T
uk+1

]
101

subject to BIuk+1 ≤ cI and BE uk+1 = cE 102

Step 3. {Velocity evaluation} 103

u̇k+1 = u̇k +
2
Δ

(
uk+1−upred

k+1

)
104

end 105

The matrix K̃ introduced in Step 0 is called an effective stiffness matrix. Let us 106

note that we omit the factor ‘1/2’ in the term BT λλλ pred
k in the predictor step. 107
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3 Optimal Solver with Bound on the Condition Number of the 108

Hessian of the Dual Energy Function 109

The favorable distribution of the spectrum of the mass matrix M is sufficient to 110

implement Step 1 by using the dual theory and the standard MPRGP algorithm des- 111

cribed in [3] with asymptotically linear complexity. To develop an optimal algorithm 112

for Step 2, we shall distinguish two cases. If the time steps are sufficiently short, then 113

the effective stiffness matrix can be considered as a perturbation of the well condi- 114

tioned mass matrix, so it is enough to use again our MPRGP algorithm to prove 115

the numerical scalability and demonstrate it by numerical experiments. On the other 116

hand, if we use longer time steps, the effective stiffness matrix has very small eigen- 117

values which obviously correspond to the eigenvectors that are near the kernel of K. 118

This observation was fully exploited for linear problems by Farhat et al. [5] who used 119

the conjugate projectors to the natural coarse grid to achieve scalability with respect 120

to the time step. Unfortunately, this idea can not be applied in full extent to the con- 121

tact problems as we do not know a priori which boundary conditions are applied to 122

the subdomains associated with the contact interface. However, we can still define 123

the preconditioning by the trace of the rigid body motions on the artificial subdomain 124

interfaces. To implement this observation, we use our preconditioning by conjugate 125

projector for partially constrained strictly convex quadratic programming problems 126

of the form 127

min
λλλ

1
2

λλλ T F̃λλλ − λλλ T d subject to λλλ I ≥ o (5)

which arises directly from the application of the dual theory on the problem in Step 128

2 of Algorithm 2.1. Such a method complies with our MPRGP-P algorithm for the 129

solution of strictly convex bound constrained problems described in [3]. We keep the 130

iterations in the subspace with the solution which is defined by the trace of the rigid 131

body motions on the artificial interfaces between subdomains excluding the contact 132

interface. Even though the necessity to keep the coarse grid away from the contact 133

interface prevented us from proving the optimality with respect to the time step, we 134

give the proof of optimality of our algorithm provided the ratio of the time step and 135

the space discretization parameter is kept uniformly bounded and show that the opt- 136

imality can be observed by numerical experiments (see [2] for details). Moreover, 137

MPRGP-P algorithm has the rate of convergence in terms of the norm of the pro- 138

jected gradient and the bound on the condition number of the Hessian matrix of the 139

cost functional. Therefore all we need to guarantee optimality is a uniform bound on 140

the condition number of the Hessian. 141

In [2], we used the standard arguments to prove the following lemma which gives 142

the required bound. 143

Lemma 1. Let B1‖λλλ‖2 ≤ ‖BT λλλ‖2 ≤ B2‖λλλ‖2 and let the elements have a regular 144

shape and size. Then 145

C1
h2Δ 2

hd (h2 +Δ 2)
‖λλλ‖2 ≤ λλλ T F̃λλλ ≤C2

Δ 2

hd ‖λλλ‖2, (6)
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with constants B1, B2, C1, and C2 independent of h, H, and Δ . Moreover, if C > 0 is 146

any constant, then for any 0 < Δ ≤Ch the condition number κ(F̃) satisfies κ(F̃) ≤ 147

C2
C1
(1+C2). 148

4 Numerical Experiments 149

The described algorithms were implemented in MatSol library [8] developed in Mat- 150

lab environment and tested on the solution of 3D frictionless transient contact prob- 151

lems. For all computations we used the HP Blade system, model BLc7000 and as 152

parallel programming environment we used Matlab Distributed Computing Engine. 153

All the computations were carried out with the relative stopping tolerance ε = 10−4. 154

a) Von Mises stress in 1 [MPa] 1 [MPa]b)Contact pressure in 

Fig. 1. Results of 3D benchmark
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3D impact problem 155

Our first academic benchmark is a 3D impact between the curved 3D elastic boxes 156

of size 10 (mm) depicted in Fig. 1. Material constants are defined by the Young mod- 157

ulus E = 2.1 ·105 (MPa), the Poisson ratio ν = 0.3, and the density ρ = 7.85 ·10−9
158

(ton/mm3). The initial gap between the curved boxes is set to 0.001 (mm). We pre- 159

scribe the initial velocity −1,000 (mm/s) on the upper body in the x3 direction. The 160



Page 352

UN
CO

RR
EC

TE
D

PR
O
O
F

T. Kozubek, Z. Dostál, T. Brzobohatý, A. Markopoulos, and O. Vlach

upper body is floating in space and the lower body is fixed along the bottom side. The 161

linearized non-interpenetration condition was imposed on the contact interface. For 162

the time discretization, we use Algorithm 2.1 with the constant time step Δ = 4 ·10−7
163

and solve the impact of bodies in the time interval τ = [0,45Δ ]. 164

The von Mises stress distribution and the normal contact pressure along the con- 165

tact interface in time τ1 = 22Δ are depicted in Figs. 1a, b, respectively. The energy 166

development is shown in Fig. 2. We can see the constant total energy curve as ex- 167

pected. 168

In Table 1, we report the numerical scalability of our algorithm for the constant 169

time step Δ1 = 1 ·10−3 and Δ2 = 1 ·10−5 and with or without conjugate projectors. 170

We kept H/h = 10. Moreover, in last two lines of the table, we report the same 171

characteristics but with the time step dependent on the discretization step h, i.e., 172

Δ1,h = 3hΔ1. 173

We can observe that the number of matrix-vector multiplications, the most ex- 174

pensive component of our algorithm, stays constant for the smaller time step Δ2 as 175

expected and increases only mildly in agreement with the theory for the case of the 176

larger time step Δ1 if we use conjugate projectors. If we simultaneously choose the 177

time step Δ proportional to h, i.e., Δ = Δh, then the number of matrix-vector multi- 178

plications stays the same as predicted by the theory. 179

Parallel scalability of our algorithm is depicted in Fig. 3, where we keep the num- 180

ber of elements fixed and increase the number of CPUs (subdomains). 181

Number of subdomains 16 54 128 250
Primal variables 196 608 663 552 1 572 864 3 072 000
Dual variables 21 706 81 652 214 699 443 920

Hessian multiplications
MPRGP Δ1 67 86 113 191
MPRGP - P Δ1 60 67 85 112
MPRGP Δ2 39 40 40 42
MPRGP - P Δ2 40 40 40 42
MPRGP Δ1,h 67 72 76 78
MPRGP - P Δ1,h 60 63 67 69

Table 1. Numerical scalability of 3D impact problem - Δ constant or dependent on h

Impact of three bodies 182

We have also tested our algorithms on the impact of three bodies. We considered the 183

transient analysis of three elastic bodies in mutual contact (see Fig. 4). We prescribe 184

the initial velocity 5,000 (mm/s) on the sphere in the x1 direction. The L-shape body 185

is fixed along the bottom side. Material constants are defined by the Young mod- 186

ulus E = 2.1 · 103 (MPa), the Poisson ratio ν = 0.3, and the density ρ = 6 · 10−9
187

(ton/mm3). For the time discretization, we use the constant time step Δ = 1 ·10−3 (s) 188

and solve the impact of bodies in the time interval τ = [0,150Δ ] (s). The total dis- 189

placement in times τ1 = 20Δ and τ2 = 80Δ (s) of the problem discretized by 1.2 ·105
190
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primal and 8.5 ·103 dual variables and decomposed into 32 subdomains using METIS 191

is depicted in Fig. 4.

a) Total displacement in ¿1 b) Total displacement in ¿2

Fig. 4. Impact of bodies in time
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