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Summary. Analysis of material interfaces in composite materials is in the center of atten- 7

tion of many material engineers. The material interface influences significantly the overall 8

behaviour of composite materials. While the perfect bond on material interface is modelled 9

without larger difficulties, the imperfect bond between different components of composite ma- 10

terials still causes some obstacles. This contribution concentrates on application of the FETI 11

method to description of the imperfect bond. 12

1 Introduction 13

The overall behavior of the engineering materials and structures is significantly af- 14

fected or even dominated by the presence of interfaces, i.e. internal boundaries aris- 15

ing from material discontinuities. Therefore, considerable research efforts within the 16

engineering community have been focused to adequately describe and simulate the 17

interfacial behavior under general loading conditions. A successful approach to this 18

problem is offered by the cohesive zone concept published in reference [3], in which 19

the bulk material is assumed to be damage-free, whereas the interface response is 20

described by means of inelastic damage law. The interface model itself is formulated 21

in terms of displacement jumps and cohesive tractions bridging the interface, with 22

the elastic stiffness as the basic constitutive parameter. Initially, the stiffness is set 23

to a large value (modeling almost perfect bonding) that gradually decreases with in- 24

creasing load. For the standard displacement-based finite element approximations, 25

this gives a rise to numerical difficulties manifested in oscillations of interfacial trac- 26

tions for stiff interfaces and non-physical penetration of adjacent bodies for imperfect 27

bonding. The purpose of this contribution is to demonstrate that these limitations can 28

be overcome by duality solvers based on FETI method. 29

2 Interface Model 30

The constitutive description adopted in this work is based on the Ortiz-Pandolfi 31

model proposed in [7]. Detailed description of the model of the imperfect material 32
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interface can be found in reference [2]. The model is based on three state variables, 33

namely the domain displacement field, u( j)(x), the interfacial displacement jump, 34

[[u(i, j) ]](x), and the interfacial damage parameter, ω(i, j)(x). The superscript ( j) de- 35

notes the subdomain number while the two superscripts (i, j) denote the interface 36

between the i-th and j-th subdomains. 37

The kinematics of the interface is quantified by the normal and tangential com- 38

ponent of the displacement jump, provided by 39

[[u(i, j)n ]](x) = [[u(i, j) ]](x) ·n( j)(x), (1)

where n( j)(x) denotes the normal vector and the tangential component is in the form 40

[[u(i, j)
t ]](x) = [[u(i, j) ]](x)− [[u(i, j)n ]](x)n( j)(x). (2)

Note that the non-penetration condition hold, i.e. the normal component must remain 41

non-negative. Following [3], these quantities are combined into an effective opening 42

δ (x, [[u(i, j) ]](x)) =
√

[[u(i, j)n ]]2(x)+β 2‖[[u(i, j)
t ]](x)‖2 (3)

in which β denotes a constitutive parameter, also called the mode mixity parameter, 43

to be determined. This gives rise to an equivalent effective traction, σ , see [7]. In 44

addition, the state of an interface is quantified by an internal damage variable, ω , 45

with ω(x) = 0 corresponding to a perfect bonding at x, whereas ω(x) = 1 indicates 46

a fully damaged interface point. 47

In order to assemble the functional of energy, several energy densities are needed. 48

The density of internal energy has the form 49

e( j)
vol(x,u

( j)(x)) =
1
2

(
ε(u( j)(x))

)T
Dε(u( j)(x)), (4)

where ε ( j)(u( j)(x)) denotes the strain, D denotes the stiffness matrix of the material. 50

The internal energy functional can be written as 51

E( j)
vol (u

( j)(x)) =
∫

Ω ( j)
e( j)

vol(x,u
( j)(x))dΩ . (5)

The potential energy of external forces has the form 52

E( j)
ext (u

( j)(x), t) =−
∫

Ω ( j)
u( j)(x) ·b(x, t)dΩ −

∫
Γ ( j)

t

u( j)(x) · t(x, t)dΓ , (6)

where b(x, t) denotes the vector of volume forces, t(x, t) denotes the vector of surface 53

traction and Γ ( j)
t is the part of the boundary of the j-th subdomain where the surface 54

tractions are prescribed. The energy-based description involves the stored energy 55

function defined as 56

eint(x, [[u ]](x),ω(x)) =
1
2

G
Δ 2

1−ω(x)
ω(x)

δ 2, (7)
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where Δ is the critical interface opening and G is the fracture toughness of an inter- 57

face. This form is consistent with the linear softening law drawn in Fig. 1. Note that 58

the stiffness associated with a partially damaged interface with the damage parame- 59

ter, ω , is obtained as a slope of the line 0A. The energy dissipated by changing the 60

internal variable from ω1 to ω2 is given by 61

d =

{
G(x)(ω2(x)−ω1(x)) ∀x ∈ Γint : ω1(x)≤ ω2(x),
∞ otherwise,

(8)

where the term ∞ refers to the fact that the damage variable cannot decrease during 62

the loading process. The interfacial dissipation distance is defined 63

D(ω1(x),ω2(x)) =
∫

Γint

d(x,ω1(x),ω2(x))dΓ . (9)

The interfacial energy functional has the form 64

Eint([[u ]](x),ω(x)) =
∫

Γint

eint(x, [[u ]](x),ω(x))dΓ , (10)

where Γint denotes the interface between subdomains.

Δ Δ

G

A

2G=Δ

0

Fig. 1. Interfacial constitutive law

65

The description of the material interface is based on incremental solution where 66

the state variables at the k-th step uk−1(x), [[u ]]k−1(x), ωk−1(x) are known. Then, 67

the energy functional has the form 68

Πk(u(x), [[u ]](x),ω(x)) =
n

∑
j=1

E( j)
vol (u

( j)(x))+ (11)

n

∑
j=1

E( j)
ext (u

( j)(x))+Eint([[u ]](x),ω(x))+D(ωk−1(x),ω(x))

and the following minimization problem is solved 69

(uk(x), [[u ]]k(x),ωk(x)) = arg min
(u(x),[[u ]](x),ω(x))

Πk(u(x), [[u ]](x),ω(x)). (12)
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The discretization of displacements and strains has the form 70

u( j)(x)≈ u( j)
h (x) = N( j)

u,h(x)u
( j)
h , (13)

ε ( j)(x)≈ ε( j)
h (x) = B

( j)
u,h(x)u

( j)
h , (14)

where N( j)
u,h(x) denotes the matrix of basis functions and B

( j)
u,h(x) denotes the strain- 71

displacement matrix. The displacement jump is discretized in the form 72

[[u(i, j) ]](x)≈ [[u(i, j)
h ]](x) = N(i, j)

[[u ]],h(x)[[u
(i, j) ]]h (15)

and the damage parameter can be expressed 73

ω(i, j)(x)≈ ω(i, j)
h (x) = N(i, j)

ω,h (x)ω
(i, j)
h . (16)

After discretization, the functional of energy (11) has the form 74

Πk(uh, [[u ]]h,ωh) =
1
2

n

∑
j=1

u( j)
h

T
K( j)u( j)

h −
n

∑
j=1

u( j)
h

T
f( j)
h + (17)

+
1
2
[[u ]]Th Kint(ωh)[[u ]]h +ωT

h ph,

where the stiffness matrix has the classical form 75

K( j) =
∫

Ω ( j)
B

( j)
u,h

T
DB

( j)
u,hdΩ (18)

and the vector of prescribed forces is defined as 76

f( j)
h =

∫
Ω ( j)

N( j)
u,h

T
(x)b(x)dΩ +

∫
Γ ( j)

t

N( j)
u,h

T
(x)t(x, t)dΓ . (19)

The stiffness matrix of the interface has the form 77

Kint(ωh) =
∫

Γint

G
Δ 2

(
1

Nω,h(x)ωh
−1

)
NT
[[u ]],h(x)β N[[u ]],h(x)dΓ (20)

and the vector ph is expressed as 78

ph =

∫
Γint

G(x)Nω,h(x)dΓ . (21)

The minimization (12) is done by the alternate minimization approach which can 79

be written as 80

(uk(x), [[u ]]k(x),ωk(x)) = argmin
ω(x)

(
min

(u(x),[[u ]](x))
Πk(u(x), [[u ]](x),ω(x))

)
. (22)

The minimization with respect to u(x) and [[u(x) ]] is associated with the Lagrangian 81

function in the form 82
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Lk,h(uh, [[u ]]h,λ h) =
1
2

n

∑
j=1

u( j)
h

T
K( j)u( j)

h −
n

∑
j=1

u( j)
h

T
f( j)
h + (23)

+
1
2
[[u ]]Th Kint(ωh)[[u ]]h +λ T

h (Bhuh− [[u ]]h).

Note that the displacement jumps [[u ]]h are subject to the non-penetration condition 83

Bh[[u ]]h ≥ 0. In the current implementation, these constraints are converted to equal- 84

ities by adopting a simple active set strategy based on the values of the Lagrange 85

multipliers λ h. There are three stationary conditions 86

∂Lk,h

∂u( j)
h

= K( j)u( j)
h − f( j)

h +B( j)
u,h

T
λ h = 0, (24)

∂Lk,h

∂λ h
=

n

∑
j=1

B( j)
u,hu( j)

h − [[u ]]h = 0, (25)

∂Lk,h

∂ [[u ]]h
= Kint(ωh)[[u ]]h−λh = 0. (26)

Equation (24) is the equilibrium equation for the j-th subdomain, (25) expresses the 87

interface conditions and (26) defines the relationship between the Lagrange multipli- 88

ers and the displacement jumps on the interface. 89

3 FETI Method 90

This section summarizes the notation and the basic relationships of the FETI method 91

which is a non-overlapping domain decomposition method. More details can be 92

found in references [1, 4] or [5]. The vector of unknowns is denoted by u, the vector 93

of prescribed forces is denoted by f and the stiffness matrix is denoted by K. Interface 94

conditions for perfect and imperfect interaction have the form 95

Bu =

(
Bc

Bs

)
u =

(
0
s

)
= c, (27)

where s denotes the jump between subdomain displacements. 96

After space discretization, the functional of energy has the form 97

Π = Π(u,λ ) =
1
2

uT Ku−uT f+λ T (Bu− c), (28)

where λ denotes the vector of Lagrange multipliers. 98

The interface condition and the solvability condition define the coarse problem 99

(
F G

GT 0

)(
λ
α

)
=

(
d− c

e

)
, (29)

where the well-known notation 100
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F = BK+BT , G =−BR, d = BK+f, e =−RT f (30)

is used. 101

In reference [6], a constitutive law for the Lagrange multipliers and the disconti- 102

nuity was introduced in the form 103

c = Hλ , (31)

where the compliance matrix, H, was defined. The coarse problem can be rewritten 104

to the form 105(
F+H G

GT 0

)(
λ
α

)
=

(
d
e

)
. (32)

The system of equations (32) is solved by the modified preconditioned conjugate 106

gradient method. 107

Comparison of (26) and (31) reveals the following equalities 108

c = [[u ]]h = Hλ = K−1
int (ωh)λ h. (33)

4 Numerical Examples 109

The proposed strategy is applied to the end-notched flexure (ENF) test and the mixed- 110

mode flexure (MMF) test used in reference [8]. The set up of the tests is depicted in 111

Fig. 2. The material parameters are the following: Young’s modulus of elasticity E =

ENF

MMF

60 mm

120mm

17 mm

10 mm 13 mm

initial crack

prescribed displacement

Fig. 2. End-notched flexure (ENF) and mixed-mode flexure (MMF) tests
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w

112

75 GPa, Poisson’s ratio ν = 0.3, critical stress σmax = 3.602 MPa, critical opening 113

Δ = 0.011 mm, fracture toughness G = 0.02 N/mm, mode mixity parameter β = 114

0.472. The structures are discretized by quadrilateral finite elements with bi-linear 115

basis functions. They are loaded by prescribed displacements in the center. 116

The load-deflection curves for both tests are depicted in Figs. 3 and 4 Very good 117

agreement with results published in [8] and [7] is obtained. 118



Page 361

UN
CO

RR
EC

TE
D

PR
O
O
F

Model of Imperfect Interfaces

700

600

500

400

300

200

100

0
0 0.5 1 1.5 2 2.5 3

Deflection [mm]

Lo
ad

 [N
]

Modified Ortiz and Pandolfi
Valoroso

Fig. 3. Load-deflection curves for ENF test
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Fig. 4. Load-deflection curves for MMF test

5 Conclusions 119

Description of the imperfect material interface based on the compliance matrix H 120

introduced in [6] was generalized with help of the energy-based delamination model 121

described in [2]. This formulation uses piecewise constant approximation of damage 122

variables and as such it allows to express the interfacial stiffness matrix easily. 123
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[6] Jaroslav Kruis and Zdeněk Bittnar. Reinforcement-matrix interaction modeled 144

by FETI method. In Domain decomposition methods in science and engineering 145

XVII, volume 60 of Lect. Notes Comput. Sci. Eng., pages 567–573. Springer, 146

Berlin, 2008. doi: 10.1007/978-3-540-75199-1_71. URL http://dx.doi. 147

org/10.1007/978-3-540-75199-1_71. 148

[7] M. Ortiz and A. Pandolfi. Finite-deformation irreversible cohesive elements for 149

three-dimensional crack propagation analysis. International Journal for Numer- 150

ical Methods in Engineering, 44:1267–1282, 1999. 151

[8] N. Valoroso and L. Champaney. A damage-mechanics-based approach for 152

modelling decohesion in adhesively bonded assemblies. Engineering Fracture 153

Mechanics, 73:2774–2801, 2006. 154

http://dx.doi.org/10.1007/978-3-540-75199-1_71
http://dx.doi.org/10.1007/978-3-540-75199-1_71



