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1 Introduction 7

We consider a symmetric system of linear equations with a block structure, 8

M

(
u
p

)
≡
(

A BT

B −C

)(
u
p

)
=

(
F
G

)
. (1)

We assume that A is n×n and C is an m×m matrix. Many such systems arise from 9

the discretization of (systems of) partial differential equations. For example, Stokes 10

equations discretized with stable finite elements or a mixed finite element method 11

for second order elliptic PDEs lead to a positive definite matrix A and to C = 0, so 12

that (1) has a genuine saddle point structure. Certain other PDE problems may result 13

in an indefinite matrix A, or a semidefinite matrix A with a large kernel, which gives 14

(1) the structure of a so called generalized saddle point problem. Linear elasticity 15

equations modelling nearly incompressible materials discretized with mixed finite 16

elements result in both matrices A and C being positive definite, having thus a nature 17

of a penalized saddle point problem. All systems mentioned above have a common 18

feature that the matrix of (1) is indefinite. 19

The specific structure of (1) makes it possible to design efficient solution methods 20

which intensively exploit the properties of the system, see the recent survey of [4] 21

on the state-of-the-art in this field. Systems derived from the discretization of PDEs 22

are usually very large and sparse, and typically are solved by some iterative method. 23

Unfortunately, these systems are ill-conditioned with respect to the mesh size h, so 24

preconditioning is necessary in order to keep the number of iterations within a rea- 25

sonable limit. Applying a left preconditioner P , one then solves a problem with a 26

preconditioned matrix P−1M . We shall consider preconditioners of the form 27

Pd =

(
I

cBA−1
0 I

)(
A0

S0

)(
I d A−1

0 BT

I

)
(2)

or 28

Pp =

(
I d BT S−1

0
I

)(
A0

S0

)(
I

cS−1
0 B I

)
, (3)
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where A0 and S0 are symmetric, positive (or negative) definite matrices whose in- 29

verses are easy to apply and c,d ∈ {−1,+1}. In accordance with [8], we will refer 30

to Pd as the family of dual block preconditioners and to Pp as the family of primal 31

block preconditioners. 32

Many popular block preconditioners can be formed by choosing appropriate val- 33

ues of c and d in the formulas above. For example, a block diagonal preconditioner, 34

cf. e.g. [2, 6, 9, 13, 19, 21] corresponds to c = d = 0 above. Block triangular pre- 35

conditioners considered e.g. in [7, 14, 22] and the Bramble–Pasciak preconditioner 36

as well, see [5], are obtained with either c or d equal to zero. The choice c = d = 1 37

in (2) produces a symmetric indefinite preconditioner, see [3, 20, 24, 25], while the 38

same choice in (3) leads to a primal based penalty preconditioner, [1, 8]. 39

It is straightforward that solving a system with Pd requires one solve with S0 and 40

at most two solves with A0, while applying Pp to a vector takes one solve with A0 41

and at most two solves with S0. When cd = 0, both types of preconditioners require 42

only one solve with A0 and one with S0. 43

Let us stress that when (1) arises from finite element discretization of PDEs, there 44

is a possibility to use other than block preconditioning approaches. On the other 45

hand, for many types of discretizations and problems, specialized methods based 46

on direct construction of a multigrid or domain decomposition preconditioner— 47

although usually outperforming block preconditioners, [15]—may take a consid- 48

erable effort to develop, implement and analyse. Since the block preconditioning 49

approach as discussed here turns out to be based on preconditioners for symmet- 50

ric positive definite matrices, this property makes it a viable and robust alternative to 51

custom methods, as in this case one can efficiently reuse existing theory and software 52

to solve more complex problems. This feature has been recognized in the software 53

package PETSc, see [23], where a family of so called field-splitting preconditioners 54

has recently been implemented. 55

2 Eigenvalue Estimates of the Preconditioned System 56

Eigenvalue clustering is vital for the convergence of a Krylov method, so it is im- 57

portant to bound the spectrum of P−1M , where P stands for either Pd or Pp. 58

Inspired by the block nature of the problem, which imposes a decomposition of the 59

unknowns into two parts (u, p) ∈ Rn×Rm, let us define a block diagonal, symmetric, 60

positive definite matrix 61

J =

(
Ã0

S̃0

)
, 62

where Ã0 is either A0, if A0 is positive definite, or (−A0), if A0 is negative definite; 63

S̃0 is defined in the same way. We assume there exist positive constants m0 and m1 64

such that 65

m0||x||J ≤ ||M x||J−1 ≤ m1||x||J ∀x ∈ Rn×Rm, 66

where 67
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||
(

u
p

)
||2J = ||u||2Ã0

+ ||p||2S̃0
, 68

This is nothing but a stability and continuity assumption in an appropriate norm, see 69

also [18]. At the same time we suppose there exists a constant b0 such that for any 70

u ∈ Rn and p ∈ Rm, 71

|pT Bu| ≤ b0||u||Ã0
||p||S̃0

. 72

Finally, we assume that for some δ ∈ {−1,+1}, the matrix H is positive definite, 73

where H is equal to either Hd or Hp (depending on whether we are addressing Pd 74

or Pp), with 75

Hd = δ
(

A0− cA
S0 + cdBA−1

0 BT + dC

)
, 76

77

Hp = δ
(

A0 + cdBT S−1
0 B− cA

S0 + dC

)
. 78

It turns out that then both HdPd
−1M and HpPp

−1M are symmetric and the 79

eigenvalues of the preconditioned matrix are bounded as stated in the following the- 80

orem, whose proof appeared in [16]: 81

Theorem 1. Suppose the above assumptions are fulfilled. If λ is an eigenvalue of 82

Pd
−1M or of Pp

−1M , then it is real and satisfies 83

m0

2(1+ b2
0)
≤ |λ | ≤ 2m1(1+ b2

0). 84

Let us mention that earlier Klawonn [12] proved a similar result for block diago- 85

nal preconditioning matrices. 86

2.1 Example Application: Stabilized Stokes Equations 87

Theorem 1 relies on the stability of (1) and therefore indicates that block precondi- 88

tioners can be used also in the case when the inf-sup condition is not satisfied and one 89

uses a so called stabilized method. As a model example let us consider a stabilized 90

Q1−Q1 discretization of Stokes equations 91

−Δu+∇p= f ,

∇ ·u = 0.

Let Th denote a shape-regular, quasi-uniform triangulation of a polygonal Ω ⊂ 92

R2 into quadrilaterals. Define the finite dimensional spaces of bilinear finite elements: 93

Vh = {v ∈ [H1
0 (Ω)]2 : v|κ ∈ [Q1(κ)]2 ∀κ ∈ Th} 94

and 95

Wh = {q ∈ L2
0(Ω)∩C(Ω) : q|κ ∈ Q1(κ) ∀κ ∈ Th}, 96
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where Q1(κ) denotes the space of bilinear functions on κ . Since Vh and Wh do not 97

satisfy the inf-sup condition the following stabilized discretization has been intro- 98

duced in [11]: 99

{
(∇uh, ∇vh)L2(Ω)− (divvh, ph)L2(Ω) = ( f , vh)L2(Ω) ∀vh ∈Vh,

−(divuh, qh)L2(Ω)− c(ph,qh) =−τ ∑κ∈Th
h2

κ( f , ∇qh)L2(κ) ∀qh ∈Wh,
(4)

where 100

c(ph,qh) = τ ∑
κ∈Th

h2
κ(∇ ph, ∇qh)L2(κ) 101

and τ > 0 is some prescribed parameter, independent of h. As the above system 102

is stable and continuous in the norm
(
||u||2

H1
0
+ ||p||2

L2

)1/2
, one concludes that an 103

optimal preconditioner (with respect to the mesh size h) can be obtained with either 104

Pd or Pp, where Ã0 is spectrally equivalent to the discrete Lapacian operator and 105

S̃0 is spectrally equivalent to the pressure mass matrix. These operators may require 106

some pre-scaling in order to make either Hd or Hd positive definite. 107

Numerical Experiments 108

We confirm the above findings running experiments for a stabilized Q1−Q1 dis- 109

cretization of the Stokes system on a unit square, obtained under MATLAB with the 110

software package IFISS 2.2, see [10]. 111

We investigated the number of iterations of the preconditioned conjugate resid- 112

ual method required to reduce the residual norm by a factor of 106. We experimented 113

with Pd having one of the following forms: block diagonal (c = 1, d = 0), upper tri- 114

angular (c = 0, d = 1) and lower triangular (c = d = 0) (see [17] for implementation 115

details) for varying mesh size h. The results for the case when A0 = A and S0 = M 116

(as suggested by the above analysis) are provided below, confirming a convergence 117

rate independent of h: 118

n+m 243 867 3,267 12,675 49,923
Lower triangular 17 21 21 22 23
Upper triangular 16 16 16 16 16
Diagonal 32 35 37 39 39

119

In order to show a more realistic choice of A0, we used A−1
0 defined by means of 120

the incomplete Cholesky factorization of A, with drop tolerance 10−3. Since for our 121

model problem the quality of the incomplete Cholesky factorization degrades slowly 122

with increasing size of the system, this is also reflected in an increase of the iteration 123

counts: 124

n+m 243 867 3,267 12,675 49,923
Lower triangular 18 20 24 35 113
Upper triangular 17 17 20 33 —
Diagonal 33 38 48 74 132

125
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It has been observed that (at least in our implementation) the best solution times 126

were obtained mostly for triangular preconditioners. 127

3 Conclusions 128

We have presented two classes of block preconditioners for symmetric saddle point 129

problems and provided eigenvalue estimates of the preconditioned system P−1M 130

under a quite general assumption of the stability and continuity of the problem being 131

solved. In the context of PDEs, based upon this result, an iterative method, optimal 132

with respect to the mesh size h, can be designed, which may reuse existing state-of- 133

the-art preconditioners or fast solvers for certain elliptic problems. 134
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