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Summary. Elliptic variational inequalities with multiple bodies are considered. It is assumed 7

that an active set method is used to handle the nonlinearity of the inequality constraint, which 8

results in auxiliary linear problems. We describe two domain decomposition methods for solv- 9

ing such linear problems, namely, the FETI-FETI (finite element tearing and interconnecting) 10

and hybrid methods, which are combinations of already existing domain decomposition meth- 11

ods. 12

Estimates of the condition numbers of both methods are provided. The FETI-FETI method 13

has a condition number which depends linearly on the number of subdomains across each body 14

and polylogarithmically on the number of element across each subdomain. The hybrid method 15

is a scalable alternative to the FETI-FETI method, and has a condition number with two poly- 16

logarithmic factors depending on the number of elements across each subdomain and across 17

each body. We present numerical results confirming these theoretical findings. 18

1 Introduction 19

Consider the following inequality constrained minimization problem, 20

min
N

∑
i=1

(
1
2

∫
Ωi

ρ(x)|∇ui(x)|2dx−
∫

Ωi

f (x)ui(x)dx

)
,

where ui ∈H1(Ωi), ui = 0 on Γ i
u , i = 1, · · · ,N,

ui−u j ≤ 0 on ∂Ωi∩∂Ω j,∀ i < j, (1)

with variable coefficients and multiple bodies Ωi ⊂ R
2 with their boundaries and 21

the Dirichlet boundaries denoted by ∂Ωi and Γ i
u , respectively, for i = 1, · · · ,N. The 22

bodies are decomposed into subdomains, 23

Ωi =
Ni⋃
j=1

Ωi, j, i = 1, · · · ,N. 24

Here, bodies mean separate physical entities; for instance, two rubber balls in contact 25

with each other are considered two bodies. Subdomains, on the other hand, is artifi- 26

cially introduced for convenience; a rubber ball can consist of as many subdomains 27
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as the modeler wants. We assume that the coefficient ρ varies moderately within 28

each body, Ωi, i = 1, · · · ,N. The diameters of Ωi and Ωi, j are denoted by Hi and Hi, j, 29

respectively. The smallest diameters of any element in Ωi and Ωi, j are denoted by 30

hi and hi, j, respectively. Also, Hb := max
i

Hi, Hs := max
i, j

Hi, j,
Hb
h := max

i

Hi
hi
, Hs

h := 31

max
i, j

Hi, j
hi, j

. We introduce the following: 32

Γgl :=
⋃
i�= j

∂Ωi∩∂Ω j, potential contact surface between bodies,,

Γ (i)
loc :=

⋃
j �=k

(∂Ωi, j ∩∂Ωi,k), interface between subdomains, i = 1, · · · ,N. (2)

Here, the subscripts gl and loc stand for global and local, respectively, referring to 33

nature of the interfaces. For each body, Ωi, i = 1, · · · ,N, two kinds of finite ele- 34

ment spaces are introduced: Ŵ (i) is a standard finite element space of continuous, 35

piecewise linear functions and, as such, is continuous across Γ (i)
loc ; W̃ (i) is a more 36

general space, consisting of finite element functions required to be continuous only 37

at the primal nodes (i.e., the vertex nodes of Γ (i)
loc in this two-dimensional case; more 38

sophisticated continuity couplings, i.e., primal constraints, are required in W̃ (i) for 39

three-dimensional problems; see [9, 10]), as in the FETI-DP (dual-primal FETI) 40

method. The trace spaces of W̃ (i) and Ŵ (i) on Γ (i)
loc ∪ (∂Ωi ∩Γgl) are denoted by Ṽ (i)

41

and V̂ (i), respectively. The trace space of Ŵ (i) on ∂Ωi∩Γgl is denoted by V (i)
OL, where 42

OL stands for “one level.” The Schur complements of the stiffness matrices for W̃ (i)
43

and Ŵ (i), obtained by eliminating unknowns corresponding to the subdomain inte- 44

riors, that is, those not associated with Γ (i)
loc ∪ (∂Ωi ∩Γgl), are denoted by S̃(i)Γ and 45

Ŝ(i)Γ , respectively. The Schur complement S(i)OL of the stiffness matrix for Ŵ (i), on the 46

other hand, is obtained by eliminating unknowns corresponding to the body interior, 47

i.e., those not associated with ∂Ωi ∩Γgl. Therefore S̃(i)Γ , Ŝ(i)Γ , and S(i)OL can be viewed 48

as operators on Ṽ (i),V̂ (i), and V (i)
OL, respectively. We note that applying S(i)OL requires 49

solving a Dirichlet problem on Ωi. 50

Let Ṽ :=∏N
i=1 Ṽ (i),V̂ :=∏N

i=1 V̂ (i),VOL:=∏N
i=1 V (i)

OL, S̃=diagN
i=1S̃(i)Γ , Ŝ=diagN

i=1Ŝ(i)Γ , 51

and SOL := diagN
i=1S(i)OL. We also introduce matrices B̃, B̂, and BOL, with elements 52

of {0,−1,1}: B̃u ⇔ u ∈ Ṽ is continuous across Γ (i)
loc ,∀ i, as well as Γgl; B̂v ⇔ v ∈ 53

V̂ is continuous across Γgl; BOLw⇔ w ∈VOL is continuous across Γgl. 54

2 Algorithms 55

With the matrices defined in Sect. 1, we can consider the following algorithm for 56

solving (1): 57

Algorithm: Active set method + Krylov subspace method 58
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1. Initialize u0. Set k = 0. Set Ak, a subset of the index set {1, · · · ,#(rows(B̃))} 59

(resp. #(rows(B̂))), according to the active set method of choice. 60

2. Solve 61

min
u∈Ṽ

1
2

uT S̃u− g̃T u, with ZkB̃u = 0 (3)

(
resp. min

u∈V̂

1
2

uT Ŝu− ĝT u, with ẐkB̂u = 0
)

(4)

approximately to a given precision, using a Krylov subspace method. Set uk+1
62

to the resulting approximate solution. Find Ak+1 accordingly. 63

3. Set k = k+ 1. Stop if Ak−1 = Ak; return to Step 2 otherwise. 64

Note that the linear problem in the kth iteration of the active set method is formu- 65

lated as a minimization problem in terms of the interface variables in Ṽ or V̂ . Here, 66

g̃ ∈ Ṽ and ĝ ∈ V̂ are appropriate load vectors. The square, diagonal matrix Zk, with 67

all elements equal to 0 or 1, is chosen such that ZkB̃ = B̃Ak , where B̃Ak is obtained 68

by replacing the ith row of B̃ with zeros for ∀ i /∈Ak. The matrix Ẑk is defined analo- 69

gously. The minimization problems (3) and (4) are equivalent to the following saddle 70

point problems, 71[
S̃ (ZkB̃)T

ZkB̃ 0

][
u
λ

]
=

[
g̃
0

]
, (5)

and 72[
Ŝ (ẐkB̂)T

ẐkB̂ 0

][
u
λ

]
=

[
ĝ
0

]
, (6)

respectively. We now consider the preconditioning of (5) and (6). 73

The FETI-FETI method is a combination of the one-level FETI method with a 74

Dirichlet preconditioner [4] and the FETI-DP method [5], and was used in [1, 2] 75

to solve frictionless contact problems. For (6), it is natural to follow the approach in 76

the one-level and FETI-DP methods and form a Schur complement equation 77

ZkB̃S̃†B̃T Zk︸ ︷︷ ︸
:=F

λ = ZkB̃S̃†g̃+ZkB̃Rα, (7)

where S̃† is a pseudoinverse of S̃, range(R) = null(S̃), and the vector α is to be 78

determined. We solve (7) with the preconditioned conjugate gradient (PCG) method, 79

using the following preconditioner: 80

P−1
F := ZkB̃DS̃B̃T

DZk. (8)

If S̃ is singular, then the PCG method needs to be confined to the following subspace: 81

V k := {λ : ZkB̃λ ∈ range(S̃)}. (9)

Most of the computational work in each iteration of the PCG method goes into the ap- 82

plications of S̃† and S̃, in the applications of F and P−1
F , respectively. The application 83
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of S̃ involves solving a Dirichlet problem on each subdomain, Ωi, j, i = 1, · · · ,N, j = 84

1, · · · ,Ni. The application of S̃† involves solving a Dirichlet problem in each sub- 85

domain, with the Dirichlet boundary condition imposed only at subdomain vertices, 86

plus solving a coarse problem on each body, associated with the set of vertices of 87

Γ (i)
loc , i = 1, · · · ,N; for details, see, e.g., [13],[14, Chap. 6]. 88

89

The hybrid method is a combination of the one-level FETI method with a Dirich- 90

let preconditioner and the BDDC (balancing domain decomposition by constraints) 91

method [3]. For (6), forming a Schur complement equation similar to (7) is much 92

more expensive because of the dense structure of Ŝ. Hence we keep the saddle point 93

formulation (6) as is and solve it with the preconditioned conjugate residual (PCR) 94

method. As in the FETI-FETI method, the PCR method needs to be confined to the 95

following subspace: 96

V̂ k := {λ : ẐkB̂λ ∈ range(Ŝ)}. 97

Letting Pk denote an orthogonal projection onto V k, we rewrite (6) as 98

[
Ŝ (PkẐkB̂)T

PkẐkB̂ 0

]

︸ ︷︷ ︸
:=A

[
u
μ

]
=

[
ĝ− B̂T λ0

0

]
, (10)

with λ0 satisfying (ẐkB̂T )λ0 ∈ range(Ŝ). For details on how to recover a solution 99

of (6) from a solution of (10), see [8]. Letting PR denote an orthogonal projection 100

onto range(Ŝ), we introduce the preconditioner B, where 101

B−1 =

[
PRM−1

BDDCPR 0
0 PkM−1

D Pk

]
. (11)

Here, MBDDC is a block diagonal matrix consisting of the BDDC preconditioners [3] 102

for the bodies: 103

M−1
BDDC = diagN

i=1M(i)−1

BDDC = diagN
i=1R̃(i)T

D,Γ S̃(i)
†

Γ R̃(i)
D,Γ , 104

where R̃(i)T

D,Γ , i = 1, · · · ,N, is a scaled restriction from Ṽ (i) to V̂ (i), with the scaling 105

factors determined by the material coefficients; similarly, BOL,D is a scaled version 106

of BOL. For details on the definition of these matrices, see, for instance, [11, 13]. 107

Then MD can be viewed as a Dirichlet preconditioner of the one-level FETI method, 108

obtained by viewing each body, Ωi, as a subdomain: 109

M−1
D = ẐkBOL,DSOLBT

OL,DẐkT
. 110

Most of the computational work in each iteration of the PCR method goes into the 111

application of Ŝ, in the application of A , and the application of S̃(i)
†

Γ , i = 1, · · · ,N 112

and SOL, in the application of B−1. The application of Ŝ requires solving a Dirich- 113

let problem on each subdomain, Ωi, j, i = 1, · · · ,N, j = 1, · · · ,Ni. The application of 114
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S̃(i)
†

Γ , i = 1, · · · ,N, which is carried out in the FETI-FETI method as well, requires 115

solving a Dirichlet problem on Ωi, j, j = 1, · · · ,Ni with the Dirichlet boundary con- 116

dition imposed only at the vertices, plus solving a coarse problem on Ωi associated 117

with the vertices of Γ (i)
loc . The application of SOL, however, requires solving a Dirich- 118

let problem on each body, which is expensive; therefore in practice such a Dirich- 119

let problem needs only to be solved inexactly, for instance with a Krylov subspace 120

method. A preconditioner for solving such a Dirichlet problem is proposed and tested 121

in [11]. 122

3 Theory 123

We now present condition number estimates for the FETI-FETI and hybrid methods. 124

Because of space limitations, details and proofs are given elsewhere; see [11, 12]. 125

Theorem 1. Let F,PF, and V k be defined as in (7) and (9), respectively. For any 126

λ ∈V k, we have 127

〈PFλ ,λ 〉 ≤ 〈Fλ ,λ 〉 ≤C(Hb/Hs)(1+ log(Hs/h))2〈PF λ ,λ 〉, 128

where C > 0 is a constant independent of the sizes of the bodies, subdomains, and 129

elements. 130

Convergence of the PCR method for the hybrid method is determined by 131

K (B−1A ) :=
μmax

μmin
=

max{|λ | : λ ∈ σ(B−1A )}
min{|λ | : λ ∈ σ(B−1A )} , (12)

where σ(B−1A ) is the spectrum of B−1A on range(PR)× V̂ k. 132

Theorem 2. Let B−1,A , and K (B−1A ) be defined as in (11)–(12), respectively. 133

We then have the following bound: 134

K (B−1A )≤C(1+ log(Hb/h))2(1+ log(Hs/h))2, 135

where C > 0 is a constant independent of the sizes of the bodies, subdomains, and 136

elements. 137

4 Numerical Results: Auxiliary Linear Problems 138

We solve the following equality-constrained minimization problem: 139

min
Nb×Nb

∑
i=1

(
1
2

∫
Ωi

|∇ui|2dx−
∫

Ωi

f uidx

)
,

with equality constraints to be specified, (13)
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Table 1. Results of FETI-FETI and hybrid.

FETI-FETI Hybrid
I II I II

1/Hb Hb/Hs Hs/h cond iter cond iter iter iter
2 fixed fixed 2.89 7 2.31 7 10 10
4 at 2 at 2 4.41 12 2.85 10 11 8
6 4.51 13 2.91 10 11 9
8 4.55 14 2.93 10 11 8
10 4.56 14 2.94 10 11 8
12 4.57 13 2.95 10 11 7
14 4.58 14 2.96 10 11 7
16 4.58 14 2.96 10 11 7

fixed 4 fixed 7.68 10 5.02 9 10 10
at 2 6 at 2 12.70 12 7.46 10 10 10

8 17.80 13 8.12 10 10 10
10 22.93 15 10.96 11 10 8
12 28.08 16 13.43 12 10 8
14 33.25 17 14.01 12 9 8
16 38.41 17 16.90 12 8 7

fixed fixed 4 4.71 9 4.73 9 12 11
at 2 at 2 6 5.90 10 6.37 10 13 13

8 6.90 10 7.08 10 13 13
10 7.79 11 8.27 11 14 14
12 8.55 11 9.25 11 14 14
14 9.23 12 9.71 12 14 14
16 9.83 12 10.52 12 14 14

where Ωi ⊂ R
2, i = 1, · · · ,Nb×Nb are square bodies with side length Hb := 1/Nb, 140

which collectively form the domain Ω̄ =
Nb×Nb⋃

i=1

Ω̄i = [0,1]× [0,1]. We require ui ∈ 141

H1(Ωi),ui|∂Ωi∩∂Ω = 0. Each Ωi is decomposed into Ns ×Ns square subdomains, 142

each of which is discretized by square bilinear elements of side length h. Also, Γ := 143

∪i�= j∂Ωi∩∂Ω j denotes the interface between the bodies. 144

We supplement (13) with two different equality constraints, associated with dif- 145

ferent contact areas between the bodies. In the first problem, the entire Γ is con- 146

sidered as the contact area, that is, we require the continuity of the displacement 147

vector across the entire Γ . This case has already been considered by Klawonn and 148

Rheinbach [6] and Klawonn and Rheinbach [7]. In the second problem, continuity 149

is imposed only on the middle third of the faces between the bodies. We solve these 150

problems with both the FETI-FETI and hybrid methods. The PCG and PCR iter- 151

ations are stopped when the norm of the residual has been reduced by a factor of 152

10−6. 153

The results are shown in Table 1. We have three parameters to vary: the num- 154

ber of bodies across Ω (Nb = 1/Hb), the number of subdomains across each body 155
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(Ns = Hb/Hs), and the number of elements across each subdomain (Hs/h). We vary 156

one parameter while keeping the other two fixed. The results for the first set of ex- 157

periments, with the entire Γ as the contact surface, are shown in column I; those for 158

the second set of experiments with a reduced contact area are shown in column II. 159

Note the linear dependence of the condition number on the number of subdo- 160

mains across each body, Hb/Hs, for the FETI-FETI method, which confirms our 161

theoretical finding. Note also that the iteration counts of the hybrid method do not 162

increase as the number of subdomains is increased. Similar numerical results for 163

the FETI-FETI method have been obtained independently by Klawonn and Rhein- 164

bach [6] and Klawonn and Rheinbach [7]. 165
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