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Summary. In this study we present a non-overlapping Schwarz waveform relaxation method 13

applied to the one dimensional unsteady diffusion equation. We derive efficient interface con- 14

ditions using an optimal control approach once the problem is discretized. Those conditions 15

are compared to the usual optimized conditions derived at the PDE level by solving a min-max 16

problem. The performance of the proposed methodology is illustrated by numerical experi- 17

ments. 18

1 Introduction 19

Schwarz-like domain decomposition methods are very popular in mathematics, com- 20

putational sciences, and engineering notably for the implementation of coupling 21

strategies. This type of method, originally introduced for stationary problems, can 22

be extended to evolution problems by adapting the waveform relaxation algorithms 23

to provide the so-called Schwarz waveform relaxation method [2, 4]. The idea behind 24

this method is to separate the spatial domain, over which the time-evolution problem 25

is defined, into subdomains. The resulting time-dependent problems are then solved 26

separately on each subdomains. An iterative process with an exchange of boundary 27

conditions at the interface between the subdomains is then applied to achieve the 28

convergence to the solution of the original problem. To accelerate the convergence 29

speed of the iterative process, it is possible to derive efficient interface conditions by 30

solving an optimization problem related to the convergence rate of the method [e.g.; 31

1, 5]. 32

In this study, we specifically address the optimization problem arising from the 33

use of Robin type transmission conditions in the framework of a non-overlapping 34

Schwarz waveform relaxation. For this type of problem, the existing work has been 35

achieved mainly at the PDE level, giving rise to the optimized Schwarz waveform 36
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relaxation algorithm [1, 2, 5]. The objective here is to use the optimal control theory 37

paradigm [9] to find parameters optimized at the discrete level, and thus to system- 38

atically make a comparison with the parameters determined at the PDE level. This 39

paper is organized as follows : in Sect. 2 we briefly recall the basics of optimized 40

Schwarz methods in the framework of a time evolution problem. Section 3 is dedi- 41

cated to the determination of the optimal control problem that we intend to address. 42

Finally, in Sect. 4 we apply our approach to a diffusion problem. 43

2 Optimization of the Convergence at the PDE Level 44

2.1 Model Problem and Optimized Schwarz Methods 45

Let us consider Ω a bounded open set of R. The model problem is to find u such that 46

u satisfies over a time period [0,T ] 47

L u = f , in Ω × [0,T ], (1)

Bu = g, on ∂Ω × [0,T ], (2)

where L and B are two partial differential operators, and f the forcing. This prob- 48

lem is complemented by an initial condition 49

u(x,0) = u0(x), x ∈Ω . (3)

We consider a splitting of the domain Ω into two non-overlapping domains Ω1 and 50

Ω2 communicating through their common interface Γ . The operator L introduced 51

previously is split into two operators L j restricted to Ω j ( j = 1,2). By noting F1, 52

F2, G1 and G2 the operators defining the interface conditions, the alternating form 53

of the Schwarz waveform relaxation algorithm reads 54

⎧⎪⎪⎨
⎪⎪⎩

L1uk
1 = f1, in Ω1× [0,T ],

uk
1(x,0) = uo(x), x ∈Ω1,

B1uk
1(x, t) = g1, in [0,T ]×∂Ω1,

F1uk
1(0, t) = F2uk−1

2 (0, t), in Γ × [0,T ],

⎧⎪⎪⎨
⎪⎪⎩

L2uk
2 = f2, in Ω2× [0,T ],

uk
2(x,0) = uo(x), x ∈Ω2,

B2uk
2(x, t) = g2, in [0,T ]×∂Ω2,

G2uk
2(0, t) = G1uk

1(0, t), in Γ × [0,T ],
(4)

55

where k = 1,2, . . . is the iteration number, and the initial guess u0
2(0, t) must be given. 56

The operators F j and G j must be chosen to impose the desired consistency of the 57

solution on the interface Γ . We consider here the one-dimensional diffusion equation 58

with constant (possibly discontinuous) diffusion coefficients κ j (κ j > 0, j = 1,2). We 59

define L j = ∂t −κ j∂ 2
x , Ω1 =(−L1,0), Ω2 =(0,L2) (L1,L2 ∈R+ ), and Γ = {x= 0}. 60

In this context, we require the equality of the subproblems solutions and of their 61

normal fluxes on the interface Γ , 62

u1(0, t) = u2(0, t), κ1∂xu1(0, t) = κ2∂xu2(0, t), t ∈ [0,T ]. (5)

To obtain such a consistency we use mixed boundary conditions of Robin type 63
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F j =−κ j∂x + p1, G j = κ j∂x + p2, ( j = 1,2), 64

where p1 and p2 are two parameters that can be optimally chosen to improve the 65

convergence speed of the Schwarz method. Algorithm (4) with two-sided Robin 66

conditions (i.e. for p1 �= p2) is well-posed for any choice of p1 and p2 such that 67

p1 + p2 > 0. This result can be shown using a priori energy estimates, as described 68

in [4]. 69

2.2 Optimization of the Convergence Factor 70

To demonstrate the convergence of algorithm (4) a classical approach [e.g. 6] is to 71

define the error ek
j between the exact solution u� and the iterates uk

j. A Fourier anal- 72

ysis enables the transformation of the original PDEs into ODEs that can be solved 73

analytically. The analytical solution on each subdomain is then used to define a con- 74

vergence factor ρ of the corresponding Schwarz algorithm. For a diffusion problem, 75

defined on subdomains of infinite size (i.e. assuming L1,L2→ ∞), we get 76

ρ(p1, p2,ω) =

∣∣∣∣(p2−
√

iωκ2)

(p2 +
√

iωκ1)

(p1−
√

iωκ1)

(p1 +
√

iωκ2)

∣∣∣∣ , (6)

where p1 and p2 are two degrees of freedom which can be tuned to accelerate the 77

convergence speed. In (6), i =
√−1, and ω ∈R is the angular frequency arising from 78

a Fourier transform in time on ek
j. A general approach to choose the Robin parameters 79

p1 and p2 is to solve a minimax problem [2] 80

min
p1,p2∈R

(
max

ω∈[ωmin,ωmax]
ρ(p1, p2,ω)

)
. (7)

Because we work in practice on a discrete problem the frequencies allowed by the 81

temporal grid range from ωmin = π/T to ωmax = π/Δ t, where Δ t is the time step 82

of the temporal discretization. For the diffusion problem under consideration here, 83

the analytical solution of the optimization problem (7) has been derived in [8] in a 84

general two-sided case (i.e. with p1 �= p2) with discontinuous coefficients κ1 �= κ2. 85

For the sake of simplicity, we consider in the present study the continuous case (κ1 = 86

κ2 = κ) and we recall the result found in [8] in this case. 87

Theorem 1. Under the assumption κ1 = κ2 = κ , the optimal parameters p�1 and p�2 88

of the minmax problem (7) are given by 89

p�1 =
α
√

2κ
4

[√
8+ v2− v

]
, p�2 =

α
√

2κ
4

[√
8+ v2+ v

]
, 90

where α = (ωminωmax)
1/4, β = α−1(

√
ωmin +

√
ωmax) and 91

v =

⎧⎨
⎩

2
√

β −1 if β ≥ 1+
√

5,√
2β 2−12 if

√
6≤ β < 1+

√
5,

0 if 2 < β <
√

6.
92

It is worth mentioning that even if the diffusion coefficients are continuous the 93

two-sided case provides a faster convergence than the one-sided case studied in [4] 94

(Fig. 1). 95
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General Remarks : 96

• The usual methodology to optimize the convergence at the continuous level 97

comes with a few assumptions that may lead to inaccuracies once the prob- 98

lem is discretized. For example, as discussed in [7] (Sect. 5), the infinite domain 99

assumption used to determine the convergence factor (6) may lead to apprecia- 100

ble differences in the optimized parameters compared to an approach taking the 101

finiteness of the subdomains into account. We numerically found that the infi- 102

nite domain assumption is valid as long as the dimensionless Fourier number 103

Fo = κ j/(L
2
jω) (with Lj the size of subdomain Ω j) of the problem does not 104

exceed a critical value Foc = 0.02. 105

• The optimization problem (7) aims at minimizing the maximum value of 106

ρ(p1, p2,ω) over the entire interval [ωmin,ωmax]. This provides a very robust 107

method general enough to deal with the worst case scenario when all the tempo- 108

ral frequencies are present in the error. An even more efficient way to proceed 109

would be to adjust the values of p1 and p2 at each iteration so that those param- 110

eters are efficiently chosen to “fight” the remaining frequencies in the error. 111

1×10–4 5×10–4 0.001 0.005 0.010 0.050 0.100

0.2

0.4

0.6

0.8

1.0

opt

Fig. 1. Convergence factor optimized at the PDE level in the one-sided case (black line) [4] and
in the two-sided case (dashed black line) [8], for κ = 10−2 m s−1, Δ t = 10 s, and T = 213Δ t

3 Optimal Control of the Robin Parameters 112

To investigate the robustness of the optimized parameters once the problem is dis- 113

cretized, the use of the optimal control theory appears as a natural choice. We aim at 114

controlling the Robin parameter in order to get the best possible convergence speed 115

in the sense of a given cost function J . Moreover, following the approach of [3] 116

and the previous discussion, we consider the possibility to use different parameters 117

p j for different steps of the iterative process. It is easy to check that by choosing 118
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different parameters at each iteration we still converge to the solution of the global 119

problem. A first way to choose the parameters is to look, at each iteration k, for pk
1 120

and pk
2 minimizing the error at the interface. In this case the cost function that we 121

intend to minimize at each iteration would be 122

J (pk
1, pk

2) =
w
2

∫ T

0

(
uk

1(0, t)−uk
2(0, t)

)2
dt

+
w̃
2

∫ T

0

(
κ1∂xuk

1(0, t)−κ2∂xuk
2(0, t)

)2
dt.

(8)

The constants w and w̃ must be chosen to balance both terms, depending on the char- 123

acteristics of the problem (see Sect. 4). The cost function (8) is designed in agreement 124

with the consistency (5) we want to impose at the interface between subdomains. J 125

provides a measure of the “inconsistency” of the solution at each iteration k, and is, 126

thus, directly related to the order of magnitude of the errors ek
j of the algorithm (as 127

shown in Fig. 2). An other strategy could be to minimize the error at a given iteration 128

K. The cost function would thus be 129

J
(
(pk

1, pk
2)k=1,K

)
=

w
2

∫ T

0

(
uK

1 (0, t)−uK
2 (0, t)

)2
dt

+
w̃
2

∫ T

0

(
κ1∂xuK

1 (0, t)−κ2∂xuK
2 (0, t)

)2
dt,

(9)

leading to an optimization on 2K parameters. This latter approach is particularly 130

interesting when we intend to obtain the best possible approximation of the exact 131

solution after a number of iterations set in advance. We propose here to lead our 132

study with this kind of approach with K = 5. The optimal control approach does not 133

per se reduce the computational cost of the algorithm because many evaluations of 134

the cost function are required during the minimization process (see Algorithm 3). We 135

use this approach as a tool to improve our understanding of the behavior of the Robin 136

parameters in order to find new directions to further accelerate the convergence speed 137

when Robin-type interface conditions are used. We denote by p�,num
1 and p�,num

2 138

the parameters found numerically by solving the optimal control problem. Those 139

parameters correspond to two vectors of size K. Similarly we will denote by p�,ana
1 140

and p�,ana
2 the parameters found analytically (cf. Theorem 1). 141

We used Matlab for the computation (Algorithm 3). Note that the well-posedness 142

of the coupling problem (4) is not sufficient to ensure a well-posed optimal control 143

problem. Some additional requirements on the convexity and regularity of the cost 144

function are necessary. We do not provide here such a proof, however we empirically 145

checked that the same solution of the optimal problem is obtained for a wide range 146

of parameter values for the initial guess. 147

4 Numerical Experiments 148

We discretized problem (4) using a backward Euler scheme in time and a second 149

order scheme defined on a staggered grid in space (see [8] for more details). We 150
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Algorithm 3 Optimal control
%== Robin parameters found analytically : p1ana, p2ana

%== Solution of the optimal control problem : p1opt, p2opt

%== Initial guess ==%

x0(1:2:2*K-1)=p1ana;
x0(2:2:2*K )=p2ana;
%== Solve the optimal control problem ==%

%== the CalcJ function proceeds to K iterations of the

%== Schwarz algorithm using 2K Robin parameters,

%== and computes the associated cost function (9)

x = fminsearch( @CalcJ, x0 );
%== Retrieve the optimized parameters

p1opt(1:K)=x(1:2:2*K-1);
p2opt(1:K)=x(2:2:2*K );

decompose the domain Ω into two non-overlapping subdomains Ω1 = [−H,0] and 151

Ω2 = [0,H] with H = 500 m. The diffusion coefficient is κ = 10−2 m2 s−1 and the 152

total simulation time is T = 213Δ t with Δ t = 10 s. The parameter values lead to a 153

dimensionless Fourier number smaller than 0.02 so that the infinite domain assump- 154

tion is valid. We simulate directly the error equations, i.e. f1 = f2 = 0 in (4) and 155

u0(x) = 0. We start the iteration with a random initial guess u0
2(0, t) (t ∈ [0,T ]) so 156

that it contains a wide range of the temporal frequencies that can be resolved by 157

the computational grid. This is done to allow a fair comparison as the parameters 158

optimized at the PDE level are optimized assuming that the full range [ωmin,ωmax] 159

is present in the error. We first perform the Optimized non-overlapping Schwarz 160

Method (referred as to OSM case) using p�,ana
1 and p�,ana

2 and then using an optimal 161

control of the Robin parameters with K = 5 (referred as to OptCon case). We first 162

check that the minimization of cost function J consistently implies the reduction of 163

the errors ‖e j‖∞ of the associated algorithm (Fig. 2). For our experiments, we chose 164

w = 1 and w̃ = H/κ in (9). We notice that in the OptCon case the convergence speed 165

is significantly improved compared to the OSM case. Indeed, nine iterations of the 166

OSM are required to obtain the same accuracy than the OptCon case after only five 167

iterations. In order to have more insight on the way the parameters p�,num
1 and p�,num

2 168

evolve throughout the iterations we plot, in Fig. 3, the corresponding convergence 169

factor (6) at each iteration. It is striking to realize that the optimal convergence is 170

obtained through a combination of 2-point (equivalent to the one-sided case) and 3- 171

point (equivalent to the two-sided case) equioscillations sometimes shifted along the 172

ω-axis to adapt to the temporal frequencies still present in the error. The first two 173

iterations aim at working mainly on the high-frequency components while the last 174

three iterations are optimized to work on the low-frequency component. The adap- 175

tivity of the Robin parameters from one iteration to the other brings more flexibility 176

to the method enabling more scale selectivity. 177
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iterationsiterations

‖ek‖∞ J

Fig. 2. Evolution of the L ∞-norm of the error (left) and of the cost function J (right) with
respect to the iterates k in the OSM and OptCon cases

Fig. 3. Sequence of convergence factors ρ(ω) resulting from the optimal control of the Robin
parameters determined to get the best possible convergence after K = 5 iterations

5 Conclusion 178

Due to its simplicity, the use of Robin-type transmission conditions is very attractive 179

when one wants to couple unsteady problems defined on non-overlapping subdo- 180

mains. Once the Robin parameters are properly chosen one can achieve a fast con- 181

vergence [2]. In the present study we showed that there is still room for improvement 182

in the design of the Robin conditions. If the Robin parameters are adjusted from one 183

iteration to the other we showed, thanks to an optimal control approach, that we can 184

significantly improve the convergence speed. It is important to emphasize that the 185

optimal control paradigm proposed in this study is general enough to be used with 186

any type of PDE and an arbitrary number of subdomains. 187
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