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1 Introduction 8

For decades, domain decomposition methods (DDM) have provided a way of solv- 9

ing large-scale problems by distributing the calculation over a number of processing 10

units. In the case of shape optimization, this has been done for each new design 11

introduced by the optimization algorithm. This sequential process introduces a bot- 12

tleneck. 13

Shape optimization is often done using gradient-based approaches because of 14

their superior efficiency. Adjoint methods provide a mathematical approach of com- 15

puting the gradients [4] using calculus of variations. Methods that combine the gov- 16

erning PDEs, their adjoints and shape parameters into one large system of equations 17

are called one-shot methods [1, 6]. The optimal shape can be acquired by solving the 18

system of equations only once. Evidently, this approach has several drawbacks. If 19

the objective function is not unimodal, the method does not guarantee capturing the 20

global optimal solution. Also, if the geometry changes are large, mesh deformation 21

is no longer possible and the mesh has to be regenerated which makes this approach 22

costly. 23

In this paper, a “distributed one-shot” method is introduced. It is based on ideas 24

originating from the fields of game theory, domain decomposition, and evolutionary 25

computing. The aim is to speed up convergence on one hand by decreasing compu- 26

tational time by intelligent parallelism using Nash game strategies and on the other 27

hand by eliminating the bottleneck caused by sequential “state–costate – gradient” 28

chain processing. The evolutionary approach allows the method to be used in global 29

or non-smooth optimization. 30

1.1 Nash Games in Geometry and Domain Decomposition 31

Competitive Nash games were introduced by J. Nash [5]. In a competitive game the 32

players maximize their payoff by taking into account the opponents’ strategies. Nash 33

games converge into a Nash equilibrium. For simplicity, let us consider a two-player 34
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game. Let S1 and S2 be the sets of available strategies of Players 1 and 2 and J1 and 35

J2 their payoff functions. A strategy pair (x̄1, x̄2) ∈ (S1,S2) is a Nash equilibrium if 36

and only if 37

J1(x̄1, x̄2) = inf
x1∈S1

J1(x1, x̄2)

J2(x̄1, x̄2) = inf
x2∈S2

J2(x̄1,x2)
(1)

The above definition can be easily generalized to a Nash game with N players. 38

Nash games can also be applied to single-objective optimization. If the ob- 39

jective function J is additively separable, i.e. J(x) = ∑N
i=1 Ji(xi) and minx J(x) = 40

minxi ∑N
i=1 Ji(xi) = 0, a “virtual” Nash game can be formed [3]. Since there are no 41

true conflicts between the criteria, the global Nash equilibrium is located at the global 42

optimum. 43

The Nash approach is well suited for inverse problems. The geometry can often 44

be decomposed into smaller subgeometries which can be optimized concurrently 45

[11]. Similarly, a domain decomposition problem for solving a partial differential 46

equation can be considered as an inverse problem with a Nash game approach where 47

the objective function is to minimize the discrepancy between the local overlapped 48

subdomain solutions, 49

JF1 (g1, ḡ2) =
∫

Ω1,2
|ϕ1 (g1, ḡ2)−ϕ2 (g1, ḡ2)|2

JF2 (ḡ1,g2) =
∫

Ω1,2
|ϕ2 (ḡ1,g2)−ϕ1 (ḡ1,g2)|2 (2)

where |·| is the L2 norm, ϕi is the solution in the subdomain Ωi and gi is the vector of 50

values of ϕi on the subdomain interface boundary Γi, j. Ω1,2 is the overlapping region 51

(cf. Fig. 1). 52

In [3, 7], a hierarchical leader–follower Stackelberg game consisting of a pair of 53

Nash games was implemented for nozzle shape reconstruction. The shape players 54

reconstructed the target geometry using a “leader” Nash game, and the flow play- 55

ers reconstructed the flow using a “follower” Nash game. For each new geometry 56

candidate produced by the shape players, a Nash game was run between the flow 57

players. In this paper, a new Nash evolutionary approach is introduced. It replaces 58

the computationally expensive hierarchical game by a single parallel global Nash 59

game coalition. 60

1.2 Global Nash Game Coalition Algorithm (GNGCA) 61

The proposed method operates as follows. The geometry of the configuration is di- 62

vided into subgeometries allocated to shape players whose task is to optimize the 63

shape (or reconstruct the target geometry). Similarly, the flow players minimize the 64

deviation of local solutions on the overlapped region of subdomains. Each shape and 65

flow player evaluate deviation of local solutions or shape optimization with his own 66

Evolutionary Algorithm (EA). After some frequency period, for example a single 67

generation, shape and flow players exchange the elite values among each other. This 68

means the flow is reconstructed along with the geometry making this a “distributed 69

one-shot” method. 70
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This new method is inherently parallel and therefore especially suitable for dis- 71

tributed parallel environments. At the higher level, the flow and shape players operate 72

separately. Depending on the methods used, the optimization process can also be dis- 73

tributed. If an optimizer is used in flow reconstruction, it too can be parallelized. By 74

reducing dimensionality of the geometry problem, algorithmic convergence can be 75

significantly improved. For example, in the case of multi-modal problems splitting 76

the territory can reduce the number of local optima. However, the efficiency of vir- 77

tual Nash approach is highly dependent on the selected geometry decomposition. 78

Non-optimal splitting can lead in reduced efficiency of the algorithm [11]. 79

2 Test Case Description 80

The method is validated using a simple position reconstruction problem from the 81

field of computational fluid dynamics. The geometry of the problem consists of a 82

large disk element (radius 1
2 units) surrounded by N ≥ 2 smaller disk elements (radii 83

1
8 units). The smaller elements are allowed to move in an area constrained by the 84

number of elements: using radial coordinates, rk = 2.0+0.5
−1.3675 and θk =−k 2π

N − π
N ± 85

π
4N (see Fig. 1). 86

This geometry allows the study of a wide variety of different domain and geom- 87

etry decompositions (cf. Fig. 1 for a 3 element case). The test case can be made more 88

challenging for example by deforming the shapes of the elements. In this paper, 2 89

and 6 element cases were studied. 90

The flow is described by the steady compressible potential flow, 91

∇ ·ρ∇ϕk = 0 in Ωk

ϕk = v∞ on Γ∞
∂ϕk
∂n = 0 on Γ1,...,n

ϕk = ϕ j on Γ j

ϕk = ϕ� on Γ�

(3)

where k is the index of the subdomain, and j, � the right and left side neighbor 92

domain indexes. Free-flow velocity v∞ = (vx,vy) = (v∞ cosα,v∞ sinα), |v∞| = 1. 93

The angle of attack α = 0.0◦. The density ρ is calculated using the formula ρ = 94{
1+ γ−1

2 M2
∞

(
1−|v|2

)} 1
γ−1

. The constant γ = 1.4 is the ratio of specific heats for 95

air. With a free flow Mach number M∞ = .3 the flow is subsonic in the whole domain. 96

The objective is to reconstruct the original positions of the elements by mini- 97

mizing the L2 norm of pressure difference between the computed and target surface 98

pressures: JSk (xk) =
1

npk
∑

npk
i=1

∣∣∣pki − ptarget
ki

∣∣∣2 where xk = (rk,θk) is the decomposed 99

design vector and npk is the number of pressure points in the region of the decom- 100

posed geometry. The vector pk includes the relevant surface pressure values. The 101

global objective function is the sum of local functions.The objective function for the 102

flow players is the L2 norm of the discrepancy on the overlapped subregion (Eq. 2). 103
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Fig. 1. Test case geometry and example decomposition

3 Test Setting 104

A variant of the popular Differential Evolution (DE) algorithm is used as the opti- 105

mization platform. The algorithm, differential evolution with adaptive control param- 106

eters (jDE) is described in detail in the original paper [2]. The difference compared to 107

the standard differential evolution is that the two control parameters, mutation factor 108

F and crossover rate CR are not kept fixed. Instead, each member of the population 109

has individual values which are allowed to change between given ranges. When a 110

new individual is formed, the offspring inherits the values from its progenitor, or 111

new random values are generated with probability of τ1 for F and τ2 for CR. In this 112

work the population size NP = 10ndim was used where ndim is the number of dimen- 113

sions in the decomposed design vector, i.e. each instance of algorithm uses an equal 114

number of individuals in order to make comparing them fair. Mutation factor is al- 115

lowed to vary within the range F = [0.1,1.0] and crossover rate CR = [0.0,1.0]. The 116

control parameter replacement probabilities are set to τ1,2 = 0.1. The algorithms end 117

when the stopping criteria JSk = 10−5 is reached. 118

Because the algorithms work in parallel, a generational approach would cause 119

bottlenecks because of the non-constant fitness function computation times. Instead, 120

a non-generational approach is used where the older individuals are replaced imme- 121

diately if the offspring is superior. In addition, the elite information exchange is done 122

asynchronously. 123

Three different approaches are tested. In the first one, the jDE algorithm is run 124

traditionally using full domain and design vector. For the second approach, a “geom- 125

etry decomposition” approach introduced in [9] is used (“Nash-jDE”). The design 126

vector x = (r1,θ1, . . . ,rN ,θN) is divided between the elements (xk = (rk,θk) ,k = 127

{1, . . . ,N}), which are then optimized using several jDE algorithms operating on 128

separate subpopulations. After each generation, the global design vector is updated 129

using elite values from each subpopulation. The proposed GNGCA algorithm is used 130

in the third case. For flow reconstruction, since the flow is subsonic, the additive 131

Schwarz domain decomposition algorithm is sufficient. The overlapped regions of 132

subdomains are made of one strip. The computational domain is divided radially so 133

that each subdomain contains one element (Fig. 1). 134

The FreeFEM++ v3.18 software is used as the solver [8]. The flow is computed 135

using finite element method with a preconditioned conjugate gradient algorithm. 136
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Table 1. Performance of the algorithms. The symbol nsl refers to the number of (shape player)
slave processes, t is the wall-clock time in seconds and nit to the number of objective function
evaluations required by the algorithm in order to reach the target precision.

t1.1jDE Nash-jDE GNGCA speed-up
t1.2case nsl t nit t nit t nit jDE N-jDE

t1.32 1155.00s 815 390.83s 279 306.57s 514 3.77× 1.27×
t1.42 elements 4 332.05s 474 210.97s 302 194.74s 652 1.70× 1.08×
t1.56 190.42s 412 132.62s 279 174.60s 888 1.09× 0.76×
t1.66 3632.85s 4387 971.17s 1175 171.61s 1894 21.17× 5.66×
t1.76 elements 12 1742.23s 4226 333.90s 809 115.87s 2502 15.04× 2.88×
t1.818 1201.11s 4369 244.53s 880 114.08s 3743 10.53× 2.14×

Since the flow is nonlinear, Eq. 3 is solved iteratively until the threshold value of 137

ερ = 10−10 for density is reached. The algorithms are run on a computer containing 138

64 Intel Xeon CPU cores clocked at 2.67 GHz. 139

The mesh is constructed using Triangle v1.6 Delaunay mesh generator [10]. Nu- 140

merical noise is minimized using mesh regeneration with the Laplacian. In order to 141

avoid inverse elements and maintain mesh quality, the mesh is regenerated over cer- 142

tain intervals (δ rk = 0.1, δθk = 10◦). An example decomposed mesh is illustrated in 143

Fig. 3. Computing one subdomain gives speed-ups ranging from 3.2× to 14.0×. 144

4 Results and Discussion 145

The elapsed wall-clock times and the number of objective function evaluations re- 146

quired by each of the algorithm are listed on Table 1. Convergence curves of the 147

algorithms are shown in Fig. 2. Final mesh and reconstructed global pressure field 148

are compared to the reference in Fig. 3. 149

The results demonstrate that the geometry decomposition method using virtual 150

Nash games can be used to increase algorithmic efficiency in geometry reconstruc- 151

tion problems. The proposed global Nash game approach shows that reconstructing 152

geometry and flow simultaneously the wall-clock time can be reduced dramatically, 153

provided the difference in the size of global and decomposed domains is sufficiently 154

large. In the case of six domains, the speed-up compared to the original method is 155

massive, over 20×. The increase compared to the pure geometry decomposition ap- 156

proach is also notable, over 5×. If the algorithms are compared a bit more fairly, i.e. 157

the flow players are considered equal to the shape players, the speed-ups are 10× 158

and 2×. 159

The efficiency of flow reconstruction is critical for the success of the proposed al- 160

gorithm. Finding the correct geometry in an incompletely reconstructed flow field is 161

not possible, which is evident in the large number of shape player objective function 162

iterations needed. Unlike in the case of the other methods, increasing the number of 163

slave processes brought only limited speed-ups for GNGCA. This was due the fact 164
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Fig. 2. Convergence curves of the tested algorithms. The onvergence according to the wall-
clock time spent is on the left and the algorithmic convergence based on the required number
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the flow players did not feed the shape players with accurate flow information fast 165

enough resulting in an increased number of shape player iterations and correspond- 166

ingly reduced efficiency improvement. 167

Algorithmic convergence can be improved by reducing the complexity of the 168

problem. A classical method where the boundary nodes are used as shape design 169

variables may be problematic due to a large number of variables. The situation can 170

be improved using parallel algorithms and Bézier spline parametrization. In cases 171

involving highly compressible potential flows where the flow is locally supersonic 172

the domain reconstruction has to be augmented with an optimizer. The flow can be 173

reconstructed using fast gradient methods on linearized equations coupled by DDM, 174

or analogously to the shape presentation, the number of variables on interface bound- 175

ary can be reduced using parametrization and the nonlinear flow can be reconstructed 176

with evolutionary algorithms (cf. [3]). 177

5 Conclusion and Future 178

In this paper first results for a new “distributed one-shot” method that applies vir- 179

tual Nash games, domain and geometry decomposition methods, are presented and 180

discussed. The feasibility of the method is validated using an academic test case 181

consisting of position reconstruction in a subsonic nonlinear flow. 182

In the forthcoming step, the Schwarz domain decomposition algorithm will be 183

replaced with more robust methods. The simple compressible potential flow equa- 184
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Final mesh (GNGCA) Final pressure field (GNGCA)
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Fig. 3. Example final mesh and pressure field (GNGCA) compared to the reference
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tion will be replaced with nonlinear systems of equations including Euler, Navier– 185

Stokes, and Maxwell equations. Further tests involve complex geometries such as 186

multi-element airfoils. The implementation of GPUs is also being studied. The ulti- 187

mate target is to extend the method to speed up the capture of solutions of complex 188

large scale problems which are frequently met in particular in 3D industrial detailed 189

design. 190
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