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Summary. Since the introduction of Finite Element Tearing and Interconnecting (FETI) by 10

Farhat and Roux in 1991, the method has been recognized to be an efficient parallel technique 11

for the solution of partial differential equations. In 2003 Langer and Steinbach formulated its 12

boundary element counterpart (BETI), which reduces the problem dimension to subdomain 13

boundaries. Recently, we have applied both FETI and BETI to contact problems of mechanics. 14

In this paper we numerically compare their variants bearing the prefix Total (TFETI/TBETI) 15

on a frictionless Hertz contact problem and on a realistic problem with a given friction. 16

1 Introduction 17

One of the leading representatives of domain decomposition methods is the Finite 18

Element Tearing and Interconnecting (FETI) proposed by Farhat and Roux [8]. It re- 19

lies on a finite element discretization of a linear elliptic boundary value problem and 20

a nonoverlapping decomposition of the related geometric computational domain into 21

subdomains. Resulting local subproblems are glued by means of Lagrange multipli- 22

ers. The dual coarse problem is solved for the Lagrange multipliers by the method of 23

conjugate gradients. Farhat et al. [9] proved that the condition number of the Schur 24

complement, which arises from the elimination of the interior degrees of freedom, 25

preconditioned by a projector orthogonal to the kernel is proportional to H/h, where 26

H denotes the maximal subdomain diameter and h is the finite element discretization 27

parameter. Moreover, [15] proved a polylogarithmic bound on the condition num- 28

ber of the Schur complement preconditioned by the Dirichlet preconditioner. This 29

result was extended by Klawonn and Widlund [10] to the case of a redundant set of 30

Lagrange multipliers and the correct (multiplicity or stiffness) scaling. 31

As the Lagrange multipliers live on the skeleton of the decomposition, it is 32

very natural to employ a boundary integral representation of solutions to the local 33

subproblems. This is the Boundary Element Tearing and Interconnecting (BETI) 34

method, which was formulated and analyzed by Langer and Steinbach [13]. The 35
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resulting discretized Steklov-Poincaré operators, which relate the local Cauchy data, 36

are proved to be spectrally equivalent to the finite element Schur complements which 37

eliminate interior degrees of freedom. An application of fully populated boundary 38

element (BE) matrices can be sparsified to a linear complexity (up to a logarithmic 39

factor), cf. [18]. Steinbach and Wendland [21] proposed a preconditioning of the BE 40

matrices by related opposite order BE operators. The latter two accelaration tech- 41

niques were exploited by Langer et al. [14] within the BETI method formulated in 42

a twofold saddle-point system. It turned to be natural to impose additional Lagrange 43

multipliers along the Dirichlet boundary, which was independently introduced as 44

Total FETI (TFETI) by Dostál et al. [6] and as All-Floating BETI by Of [16], see 45

also [17]. 46

An extension of FETI and BETI methods to contact problems is a challenging 47

task due to the strong nonlinearity of the variational inequality under consideration. 48

To name a few of many research groups attacking this problem, see [1, 11, 20, 22]. 49

The base for our development is a theoretically supported scalable algorithm for 50

both coercive and semicoercive contact problems presented by Dostál et al. [7] and 51

in the monograph by Dostál [5]. The first scalability results using TBETI for the 52

scalar variational inequalities and the coercive contact problems were presented only 53

recently by Bouchala et al. [2, 3], respectively. We also refer to [19]. 54

The aim of this paper is to numerically compare TFETI and TBETI for two realis- 55

tic problems. In Sect. 2 we recall the algebraic formulation of the TFETI and TBETI 56

methods for contact problems. In Sect. 3 we describe different representations of the 57

Schur complement. In Sect. 4 we compare the methods for the 3-dimensional (3d) 58

Hertz contact problem without a friction and for a 3d contact problem of a ball bear- 59

ing with a given friction. In Sect. 5 we conclude. 60

2 TFETI/TBETI Formulations 61

Both TFETI and TBETI methods for contact problems of mechanics lead, after a 62

discretization, to the following problem: 63

min
u

1
2
〈Su,u〉− 〈 f ,u〉 subject to BI u≤ cI and BE u = cE , 64

where we search for the local boundary displacement fields u := (u1, . . . ,up) with 65

p being the number of subdomains. The Hessian S := diag(S1, . . . ,Sp) consists of 66

the Schur complements which are local Neumann finite element stiffness matrices 67

eliminated to subdomain boundaries in the case of TFETI, and which are symmet- 68

ric boundary element discretizations of local Steklov-Poincaré operators in the case 69

of TBETI. Note that KerSi is the space spanned by six linearized local rigid body 70

modes. In f := ( f1, . . . , fp) we cummulate local boundary tractions. Further, BE is 71

a full rank sign matrix, the first part of which interconnects teared degrees of free- 72

dom with corresponding first part of cE to be zero, while the second parts of BE 73

and cE realize the Dirichlet boundary condition. Finally, the inequality with BI , cI 74

prescribes linearized non-penetration conditions. 75
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Due to expensive projections onto the linear inequality constraints, we switch to 76

the dual formulation with simple bound and equality constraints 77

min
λI≥0

1
2
〈BS+BT λ ,λ 〉− 〈BS+ f − c,λ 〉 s.t. (BT λ − f )⊥KerS, 78

where we introduce Lagrange multipliers λ := (λI ,λE ) with I and E referring to 79

the inequality and equality constraints, respectively. Further, we cover BI , BE by B 80

and similarly c := (cI ,cE ). Let S+ be a pseudoinverse of S, i.e., S S+g = g for any 81

g⊥KerS. Let us denote by R := diag(R1, . . . ,Rp) the column basis of KerS consist- 82

ing of local rigid body modes Ri and by P the orthogonal projector from ImB onto 83

KerRT BT = (KerS)⊥. To homogenize the linear (orthogonality) constraint, assume 84

we are given a feasible λ0 and search for λ := λ̃ +λ0. Returning to the old notation, 85

we arrive at the following constrained quadratic programming problem precondi- 86

tioned by the projector P and regularized by the complementary projector Q := I−P: 87

min
λI≥−(λ0)I

1
2

〈(
1
ρ

PFP+Q

)
λ ,λ

〉
−
〈

1
ρ

P(BS+ f0− c),λ
〉

s.t. RT BT λ = 0, (1)

where F := BS+BT and f0 := f −BT λ0. Finally, we scale the cost function by ρ ≈ 88

‖PFP‖. Now from Theorem 3.2 of [9] and from the spectral equivalence of local 89

boundary element and finite element Schur complements Si, see Lemma 3.2 of [13], 90

we have the following optimality result valid for both TFETI and TBETI. 91

Theorem 1. Denote H := (1/ρ)PFP+Q. There exist c,C > 0 independent of h, H 92

so that 93

λmin(H |ImP)≥ c
h
H

and λmax(H |ImP) = ‖H ‖ ≤C. 94

We are now in the position to use the augmented Lagrangian algorithm developed by 95

Dostál [4], see also [5], for the solution of our constraint minimization problem (1). 96

We mention that this algorithm is in some sense optimal. 97

3 Schur Complements 98

The local Schur complements Si represent symmetric discretizations of the Steklov- 99

Poincaré operator S̃i mapping the Dirichlet data to the Neumann data. In particular, 100

S̃i(ui) := σi(ε(ũi)) ·ni in the case of elastostatics, where ni is the outward unit normal 101

to the subdomain Ωi, σi(ε(ũi)) denotes the elastostatic stress evaluated using the 102

local linearized Hooke’s law between the stress σi and the strain ε(ũi), and where ũi 103

solves the following inhomogeneous Dirichlet boundary value problem: 104

divσi(ε(ũi(x)) = 0 in Ωi, ũi(x) = ui(x) on ∂Ωi. (2)

AQ1 105

In the case of TFETI we solve (2) approximately by the finite element method. 106

The approximation of S̃i is then as follows: 107
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Si := (Ai)BB− (Ai)BI(Ai)
−1
II (Ai)IB, 108

where (Ai) jk :=
∫

Ωi
σi(ε(ϕ

(i)
j (x))) : ε(ϕ(i)

k (x))dx is the Neumann finite element ma- 109

trix assembled in the vector lowest order nodal basis functions ϕ(i)
j , and where B and 110

I are the sets of indices of boundary and interior degrees of freedom, respectively. 111

In the case of TBETI the interior degrees of freedom are already eliminated in the 112

continuous formulation via a boundary integral representation of ũi(x) while making 113

use of the known elastostatic fundamental solution. After the lowest order Galerkin 114

boundary element discretization, we arrive at the following relation between the ap- 115

proximated nodal based Dirichlet data, still denoted by ui, and the element-based 116

Neumann data, denoted by ti ≈ σi(ε(ũi)) ·ni: 117

(
ui

ti

)
=

(
(1/2)Mi−Ki Vi

Di ((1/2)Mi +Ki)
T

)(
ui

ti

)
118

with fully populated boundary element matrices Vi, Ki, and Di, which are referred 119

to as single-layer, double-layer, and hypersingular matrix, respectively, and with the 120

boundary mass matrix Mi. We then employ the following symmetric approximation 121

of the Schur complement S̃i: 122

Si := Di +((1/2)Mi +Ki)
T V−1

i ((1/2)Mi +Ki) . 123

4 Numerical Comparison 124

All the presented simulations are performed using a parallel Matlab within our Mat- 125

Sol library, see [12]. The implementations of TFETI and TBETI are consistent. The 126

only point where they differ is assembling of FEM and BEM matrices and subsequent 127

Cholesky factorizations. In the preprocessing phase times for the BEM matrices as- 128

sembling dominate. Our simulations were run on a cluster of 48 cores with 2.5 GHz 129

and the infiband interface, which are equipped with licences of Matlab parallel com- 130

puting engine. 131

First we consider a frictionless 3–dimensional Hertz problem, as depicted in 132

Fig. 1, with the Young modulus 2.1 · 105 MPa and the Poisson ratio 0.3, where the 133

ball is loaded from top by the force 5,000 N. ANSYS discretization of the two bod- 134

ies is decomposed by METIS into 1,024 subdomains. The comparison of TFETI 135

and TBETI in terms of computational times and number of Hessian multiplications 136

is given in Table 1. In Fig. 2 we can see a fine correspondence of contact pressures 137

computed by TFETI and TBETI to the analytical solution. The convergence criterion 138

was the decay of the dual error to 10−6 relatively to the initial dual residuum. 139

In the second example we solve the contact problem of ball bearing, which 140

consists of 10 bodies. We impose Dirichlet boundary condition along the outer 141

perimeter and load the opposite part of the inner diameter with the force 4,500 N as 142

depicted in Fig. 3. The Young modulus and the Poisson ratio of the balls and rings are 143

144
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Fig. 1. Geometry of the Hertz problem
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t1.1number of number of preprocessing solution number of
t1.2method primal DOFs dual DOFs time time Hessian applications

t1.3TFETI 4,088,832 926,435 21 min 1 h 49 min 593
t1.4TBETI 1,849,344 926,435 1h 33 min 1 h 30 min 667

Table 1. Numerical performance of TFETI and TBETI applied to the Hertz problem

Fig. 2. Correspondence of numerical Hertz contact pressures to the analytic solution
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2.1 ·105 MPa and 0.3, respectively. Those of the cage are 2 ·104 MPa and 0.4, respec- 145

tively. To get rid of the rigid body modes in the solution we introduce a small bound- 146

ary gravitation term for each of the bodies. The discretized geometry was decom- 147

posed into 960 subdomains. Numerical comparison of TFETI and TBETI is shown 148

in Table 2 and the resulting vertical displacement field is depicted in Fig. 4.

outer ring

inner ring

cage

ball

load

fixation

4500N

26

19 13
18

24

30
.7

5

Fig. 3. Ball bearing: geometry, applied force and the Dirichlet boundary

Fig. 4. Ball bearing: vertical component of the computed displacement field
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t2.1number of number of preprocessing solution number of
t2.2method primal DOFs dual DOFs time time Hessian applications

t2.3TFETI 1,759,782 493,018 129 s 2 h 5 min 3203
t2.4TBETI 1,071,759 493,018 715 s 1 h 52 min 2757

Table 2. Numerical performance of TFETI and TBETI applied to the ball bearing problem

149
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5 Conclusion 150

In the paper we compared TFETI and TBETI and numerically documented their 151

performance for two engineering problems. Concerning timings and numbers of it- 152

erations it was shown that the methods are rather equal up to the assembling phase, 153

which is more expensive in TBETI case. On the other hand, the accuracy of the 154

boundary element discretization is usually much higher than the corresponding finite 155

element discretization. This statement is supported by the theory provided that the 156

solution is sufficiently regular. It can be also seen from Fig. 2, where one can guess 157

that the TFETI relative error of 1.1759 % can be obtained with much less TBETI 158

degrees of freedom. 159
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