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1 Introduction 8

This study focuses on a construction of a parallel preconditioner for a FETI-DP 9

(dual primal Finite Element Tearing and Interconnecting) method for a mortar Hsieh- 10

Clough-Tocher (HCT) discretization of a model fourth order problem with discon- 11

tinuous coefficients. 12

FETI-DP methods were introduced in [8]. They form a class of fast and efficient 13

iterative solvers for algebraic systems of equations arising from the finite element 14

discretizations of elliptic partial differential equations of second and fourth order, 15

cf. [8, 10, 11, 16] and references therein. In a one-level FETI-DP method one has 16

to solve a linear system for a set of dual variables formulated by eliminating all 17

primal unknowns. The FETI-DP system contains in itself a coarse problem, while 18

the preconditioner is usually fully parallel and constructed only from local problems. 19

There are many works investigating iterative solvers for mortar method for sec- 20

ond order problem, e.g. cf. [1–3] and references therein. There have also been a few 21

FETI-DP type algorithms developed for mortar discretization of second order prob- 22

lems, cf. e.g. [6, 7, 9]. But there is only a small number of studies focused on fast 23

solvers for mortar discretizations of fourth order elliptic problems, cf. [12, 15, 17]. 24

In this study we follow the approach of [9] which considers the case of a FETI-DP 25

method for mortar discretization of a second order problem. 26

In this paper we first present the construction of mortar discretization of a fourth 27

order elliptic problem which locally utilizes Hsieh-Clough-Tocher finite elements 28

in the subdomains. Next we introduce a FETI-DP problem and then a Neumann- 29

Dirichlet parallel preconditioner for a FETI-DP problem is proposed. Finally, we 30

present the almost optimal bounds of the condition number, namely, a bound which 31

grows like C(1+ log(H/h))2, where H is the maximal diameter of subdomains and 32

h is a fine mesh parameter. 33

∗ This work was partially supported by Polish Scientific Grant 2011/01/B/ST1/01179.

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
Lecture Notes in Computational Science and Engineering 91,
DOI 10.1007/978-3-642-35275-1__73, © Springer-Verlag Berlin Heidelberg 2013

mailto:Leszek.Marcinkowski@mimuw.edu.pl


Page 648

UN
CO

RR
EC

TE
D

PR
O
O
F

Leszek Marcinkowski

2 Discrete Problem 34

In this section we focus on a mortar Hsieh-Clough-Tocher (HCT) finite element dis- 35

cretization for a model fourth order elliptic problem with discontinuous coefficients. 36

Let Ω be a polygonal domain in the plane. We assume that there exists a partition 37

of Ω into disjoint polygonal subdomains Ωk such that Ω =
⋃N

k=1 Ω k with Ω k ∩Ω l 38

being an empty set, an edge or a vertex (crosspoint). We also assume that these 39

subdomains form a coarse triangulation of the domain which is shape regular in 40

the sense of [5]. We introduce a global interface Γ =
⋃

i ∂Ωi \ ∂Ω which plays an 41

important role in our study. 42

Our model differential problem is to find u∗ ∈ H2
0 (Ω) such that 43

a(u∗,v) =
∫

Ω
f v dx ∀v ∈H2

0 (Ω), (1)

where f ∈ L2(Ω), H2
0 (Ω) = {u ∈ H2(Ω) : u = ∂nu = 0 on ∂Ω} and a(u,v) = 44

∑N
k=1

∫
Ωk

ρk[ux1x1 vx1x1 + 2 ux1x2 vx1x2 + ux2x2vx2x2 ] dx. The coefficients ρk are positive 45

and constant. Here uxkxl := ∂ 2u
∂xk∂xl

for k, l = 1,2 and ∂nu is a unit normal deriva- 46

tive of u. 47

In each subdomain Ωk we introduce a quasiuniform triangulation Th(Ωk) made 48

of triangles with the parameter hk = maxτ∈Th(Ωk) diam(τ), cf. e.g. [4]. We can now

Fig. 1. Degrees of freedom of HCT element

49
introduce local finite element spaces. Let Xh(Ωk) be the Hsieh-Clough-Tocher (HCT) 50

macro finite element space defined as follows: 51

Xh(Ωk) = {u ∈C1(Ωk) : u ∈ P3(τi), τi ∈ Th(Ωk), for the subtriangles τi,

i = 1,2,3, formed by connecting the vertices of

any τ ∈ Th(Ωk) to its centroid, and

u = ∂nu = 0 on ∂Ωk ∩∂Ω},
where P3(τi) is the function space of cubic polynomials defined over τi. The degrees 52

of freedom of a function u∈ Xh(Ωk) over τ ∈ Th(Ωk) are defined as: {u(pk),∇u(pk), 53

∂nu(m j)}k, j=1,2,3, where pk is a vertex and m j is a midpoint of an edge of τ , cf. Fig. 1. 54
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Next a global space Xh(Ω) is defined as Xh(Ω) = ∏N
i=1 Xh(Ωk). We also intro- 55

duce X̃h(Ω) – a subspace of Xh(Ω) formed by all functions in Xh(Ω), which has 56

all degrees of freedom continuous at the crosspoints, i.e. the common vertices of 57

substructures. 58

Let Γkl denote the interface between two subdomains Ωk and Ωl i.e. the open edge 59

that is common to these subdomains. Note that each interface Γkl inherits two one 60

dimensional triangulations made of segments that are edges of elements of Th(Ωk) 61

and Th(Ωl), respectively. Thus there are two independent 1D triangulations on Γkl: 62

Th,k(Γkl) related to Ωk and another one associated with Ωl - Th,l(Γlk), cf. Fig. 2. Let 63

γkl be a mortar, i.e. the side corresponding to Ωk if ρk ≥ ρl and then let δlk be the 64

other side of Γlk associated to Ωl called a slave (nonmortar). 65

For each interface Γkl we introduce two test spaces associated with its slave tri- 66

angulation Th,l(δlk) (cf. [13, 14]): let Mh
t (δlk) be the space formed by C1 smooth 67

piecewise cubic functions on the slave triangulation of δlk, which are piecewise lin- 68

ear in the two end elements, and let Mh
n(δlk) be the space of continuous piecewise 69

quadratic functions on the elements of this triangulation, which are piecewise linear 70

in the two end elements. 71

Γ
ij

Ωi Ωj

γ
ij

δ ji

Fig. 2. Independent meshes on an interface Γi j

We also define a space M = ∏δlk⊂Γ Mlk with Mlk = Ml
t (δlk)×Ml

n(δlk) and a 72

bilinear form b(u,ψ): let u = (uk)
N
k=1 ∈ X̃h(Ω) and ψ = (ψlk)δlk

= (ψlk,t ,ψlk,n)δlk
∈ 73

M, then b(u,ψ) = ∑δlk⊂Γ ∑s∈{t,n} blk,s(u,ψlk,s) with 74

blk,t(u,ψlk,t) =

∫
δlk

(uk−ul)ψlk,t ds,

blk,n(u,ψlk,n) =
∫

δlk

(∂nuk− ∂nul)ψlk,n ds.

Further we will use the same notation for a function and for the vector with the values 75

of degrees of freedom of this function. 76

We introduce discrete problem as the saddle point problem: find a pair (u∗h,λ
∗) ∈ 77

X̃h(Ω)×M such that 78
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a(u∗h,v)+ b(v,λ ∗) = f (v) ∀v ∈ X̃h(Ω), (2)

b(u∗h,φ) = 0 ∀φ ∈M, (3)

where ah(u,v) = ∑N
k=1 ak(u,v) for 79

ak(u,v) =
∫

Ωk

ρk[ux1x1 vx1x1 + 2 ux1x2vx1x2 + ux2x2 vx2x2 ]dx. 80

This problem has a unique solution and error bounds are established, e.g. cf. [14]. 81

3 Matrix Form of Mortar Conditions 82

Note that (3) is equivalent to two mortar conditions on each δlk = γkl = Γkl: 83

∫
δlk

(uk−ul)φ ds = 0 ∀φ ∈Ml
t (δlk), (4)

∫
δlk

(∂nuk− ∂nul)ψ ds = 0 ∀ψ ∈Ml
n(δlk). (5)

We introduce the following splitting of two vectors representing the tangential 84

and normal traces uδlk
and ∂nuδlk

: uδlk
= u(r)δlk

+ u(c)δlk
and ∂nuδlk

= ∂nu(r)δlk
+ ∂nu(c)δlk

on a 85

slave δlk ⊂ ∂Ωl , where superscript (c) refers to degrees of freedom related to cross- 86

points (ends of this edge) and superscript (r) refers to degrees of freedom related to 87

remaining nodes (vertices and midpoints) on this edge. We can now rewrite (4) and 88

(5) in a matrix form on each interface Γkl ⊂ Γ : 89

B(c)
t,δlk

u(c)δlk
+B(r)

t,δlk
u(r)δlk

= B(c)
t,γkl

u(c)γkl
+B(r)

t,γkl
u(r)γkl

,

B(c)
n,δlk

∂nu(c)δlk
+B(r)

n,δlk
∂nu(r)δlk

= B(c)
n,γkl

∂nu(c)γkl
+B(r)

n,γkl
∂nu(r)γkl

,
(6)

where the matrices Bt,δlk
= [B(c)

t,δlk
, B(r)

t,δlk
] and Bn,δlk

= [B(c)
n,δlk

,B(r)
n,δlk

] are mass matri- 90

ces obtained by substituting the traces of standard nodal basis functions of Xh(Ωl) 91

and nodal basis functions of Ml
t (δlk),Ml

n(δlk), respectively, into (4). The matrices 92

Bt,γkl = [B(c)
t,γkl

, B(r)
t,γkl

] and Bn,γkl = [B(c)
n,γkl

,B(r)
n,γkl

] are constructed analogously but utiliz- 93

ing traces onto γkl of standard nodal basis functions of Xh(Ωk). Note that B(r)
t,δlk

,B(r)
n,δlk

94

are positive definite square matrices, but that all other matrices in (6) are rectangular 95

in general. 96

4 FETI-DP Problem 97

Let Kl be a matrix of al(·, ·) in the standard basis of Xh(Ωl). Then let K̃ be the matrix 98

obtained from a block diagonal matrix K := diag(Kl)
N
l=1 by taking into account the 99

continuity of the degrees of freedom at crosspoints. We can partition K̃ into 100
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K̃ =

⎛
⎝ Kii Kic Kir

Kci Kcc Kcr

Kri Krc Krr

⎞
⎠ , 101

where the superscript (i) refer to the degrees of freedom associated with nodal points 102

interior to subdomain, (c) to the degrees of freedom related to crosspoints, and (r) to 103

the degrees of freedom associated the remaining nodes on masters and slaves. Then 104

the matrix formulation of (2) and (3) is the following: 105

⎛
⎜⎜⎝

Kii Kic Kir 0
Kci Kcc Kcr (B(c))T

Kri Krc Krr (B(r))T

0 B(c) B(r) 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u(i)

u(c)

u(r)

λ ∗

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

fi

fc

fr

0

⎞
⎟⎟⎠ . (7)

Here B(c) is the matrix built from B(c)
t,δlk

,B(c)
n,δlk

,B(c)
t,γkl

,B(c)
n,γkl

for all Γkl = γkl = δlk ⊂ 106

Γ and B(r) := diag([−B(r)
γkl
,B(r)

δlk
])Γkl⊂Γ is the block diagonal matrix with 107

B(r)
γkl

:=

(
B(r)

t,γkl
0

0 B(r)
n,γkl

)
, B(r)

δlk
:=

(
B(r)

t,δlk
0

0 B(r)
n,δlk

)
. (8)

Next we eliminate the unknowns related to the interior nodes and crosspoints i.e. 108

u(i), u(c) in (7) and we get 109

S̃u(r) + B̃T λ ∗ = f̃r,

B̃u(r) + S̃ccλ ∗ = f̃c,
(9)

where the respective matrices are defined as follows: 110

S̃ := Krr− (Kri Krc)(K̃
(ic))−1

(
Kir

Kcr

)
, 111

112

B̃ := B(r)− (0 B(c))(K̃(ic))−1
(

Kir

Kcr

)
, 113

and S̃cc := −(0 B(c))(K̃(ic))−1

(
0

(B(c))T

)
with the nonsingular matrix K̃(ic) := 114

(
Kii Kic

Kci Kcc

)
. 115

Eliminating u(r) we obtain the following FETI-DP problem: find λ ∗ ∈ M such 116

that 117

F(λ ∗) = d, (10)

where d := f̃c− B̃S̃−1 f̃r and F := S̃cc− B̃S̃−1B̃T . 118

5 Parallel Preconditioner 119

Let Wr = {w(r) : w ∈ X̃h(Ω)} i.e. Wr is the space of vectors representing all degrees 120

of freedom of functions from X̃h(Ω) associated with nodes (vertices and midpoints) 121

on Γ but are not associated with crosspoints. 122
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We can decompose any vector w(r) ∈ Wr into vectors related to masters and 123

slaves: 124

w(r) =
(

w(r)
Γ ,w(r)

Δ

)T
, 125

where w(r)
Γ is the vector with the values of degrees of freedom which are associated 126

with the nodes on the masters and w(r)
Δ is the vector with the values of degrees of 127

freedom which are related to the nodes on the slaves. We then introduce WΔ = {w(r)
Δ : 128

w(r) ∈Wr} i.e. the space formed by vectors in Wr which have only entries related to 129

the degrees of freedom which are associated with the nodes on the slaves. It is very 130

important to note that 131

dim M = dimWΔ . 132

Let SΔ be the matrix obtained by restricting S̃ : Wr→Wr to WΔ . 133

Note that this matrix is can be represented as a block diagonal matrix with non- 134

singular diagonal blocks Sk,Δ , i.e. 135

SΔ := diag(Sk,Δ )k, 136

where the subscript k runs over all subdomains that have at least one edge on Γ as a 137

slave. Naturally, we could also partitioned this matrix with respect to the slaves. 138

Define nonsingular block diagonal matrix BΔ : WΔ →WΔ : 139

BΔ := diag(B(r)
δlk
)δlk⊂Γ , 140

where B(r)
δlk

are block diagonal matrices (with two nonsingular blocks) defined in (8). 141

Then we introduce our parallel preconditioner: 142

M−1
DN := B−T

Δ SΔ B−1
Δ ,

which is nonsingular, or equivalently its inverse: MDN := BΔ S−1
Δ BT

Δ . Note that SΔ 143

and thus MDN are dependent on the discontinuous coefficients ρk. 144

6 Condition Number Bounds 145

The main result of this paper is the following theorem which yields the bound of the 146

condition number of preconditioned problem: 147

Theorem 1. It holds that 148

〈MDNλ ,λ 〉 ≤ 〈Fλ ,λ 〉 ≤C

(
1+ log

(
H
h

))2

〈MDNλ ,λ 〉 ∀λ ∈M, 149

where H = maxk hk, h = mink hk, and C a positive constant independent of the coef- 150

ficients, or the parameters Hk and hk. Here 〈·, ·〉 is the standard l2 inner product. 151
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As a direct consequence of this theorem we see that the condition number of 152

M−1
DN F is bounded by C

(
1+ log

(
H
h

))2
. 153

The lower bound in the theorem is obtained by purely algebraic arguments. And 154

we get the upper bound by using several technical results of which the most important 155

one is the estimate of special trace norms of jumps of tangential and normal traces 156

over an interface Γkl ⊂ Γ . 157
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