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Summary. In this paper we present a hybrid domain decomposition approach for the parallel 6

solution of linear systems arising from a discontinuous Galerkin (DG) finite element approx- 7

imation of initial boundary value problems. This approach allows a general decomposition of 8

the space–time cylinder into finite elements, and is therefore applicable for adaptive refine- 9

ments in space and time. 10

1 A Space–Time DG Finite Element Method 11

As a model problem we consider the transient heat equation 12

∂tu(x, t)−Δu(x, t) = f (x, t) for (x, t) ∈ Q := Ω × (0,T ), (1)

u(x, t) = 0 for (x, t) ∈ Σ := ∂Ω × (0,T), (2)

u(x,0) = u0(x) for (x, t) ∈Ω ×{0} (3)

where Ω ⊂ R
n,n = 1,2,3, is a bounded Lipschitz domain, and T > 0. Let TN be 13

a decomposition of the space–time cylinder Q = Ω × (0,T ) ⊂ R
n+1 into simplices 14

τk of mesh size h. For simplicity we assume that the space time cylinder Q has a 15

polygonal (n = 1), a polyhedral (n = 2), or a polychoral (n = 3) boundary ∂Q. With 16

IN we denote the set of all interfaces (interior facets) e between two neighboring 17

elements τk and τ�. For an admissible decomposition the interior facets are edges 18

(n = 1), triangles (n = 2), or tetrahedrons (n = 3). 19

With respect to an interior facet e ∈IN we define for a function v the jump 20

[v]e(x, t) := v|τk
(x, t)− v|τ�(x, t) for all (x, t) ∈ e, 21

the average 22

〈v〉e(x, t) :=
1
2

[
v|τk

(x, t)+ v|τ�(x, t)
]

for all (x, t) ∈ e, 23

and the upwind in time direction by 24
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{v}up
e (x, t) :=

{
v|τk

(x, t) for nt ≥ 0,

v|τ�(x, t) for nt < 0
for all (x, t) ∈ e, 25

where n = (nx,nt) is the normal vector of the interior facet e. 26

For a decomposition TN of the space–time cylinder Q we introduce the discrete 27

function space of piecewise polynomials of order p 28

Sp
h,0(TN) :=

{
v : v|τk

∈ Pp(τk) for all τk ∈ TN and v|Σ = 0
}
. 29

The proposed space–time approach is based on the use of an interior penalty Galerkin 30

approximation of the Laplace operator and an upwind scheme for the approximation 31

of the time derivative, see, e.g., [3, 5]. Hence we have to find uh ∈ Sp
h,0(TN) such that 32

aDG(uh,vh) :=−
N

∑
k=1

∫
τk

uh ∂t vh dxdt +
∫

ΣT

uh vh dx

+ ∑
e∈IN

∫
e
nt {uh}up

e [vh]e ds(x,t) +
N

∑
k=1

∫
τk

∇xuh ·∇xvh dxdt

− ∑
e∈IN

∫
e
[〈nx ·∇xuh〉e [vh]e− ε [uh]e〈nx ·∇xvh〉e] ds(x,t)

+
σ
h ∑

e∈IN

∫
e
|nx|2 [uh]e [vh]e ds(x,t)

=

∫
Q

f vh dxdt +
∫

Σ0

u0 vh dx =: F(vh)

(4)

is satisfied for all vh ∈ Sp
h,0(TN). The parameters σ and ε have to be chosen appro- 33

priately. For vh ∈ Sp
h,0(TN) and σ > 0 the related energy norm is given by 34

‖vh‖2
DG := ‖vh‖2

A + ‖vh‖2
B, 35

where 36

‖vh‖2
A :=

N

∑
k=1

‖∇xvh‖2
τk
+

σ
h ∑

e∈IN

‖|nx| [vh]e‖2
L2(e)

,

‖vh‖2
B := h

N

∑
k=1

‖∂tvh‖2
τk
+

1
2
‖vh‖2

L2(Σ0∪ΣT )
+

1
2 ∑

e∈IN

‖
√
|nt | [vh]e‖2

L2(e)
.

The unique solvability of the variational formulation (4) is based on the following 37

stability result. 38

Lemma 1. Let ε ∈ {−1,0,1} and σ > 0. For ε ∈ {−1,0} let σ be sufficient large. 39

Then the stability estimate 40

sup
0 	=vh∈Sp

h,0(TN)

aDG(uh,vh)

‖vh‖DG
≥ cA

1‖uh‖DG for all uh ∈ Sp
h,0(TN) 41
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is satisfied where the constant cA
1 depends on the shape of the finite elements, and 42

on the stabilization parameter σ . However, for a sufficient large choice of σ we can 43

ensure cA
1 = 1

2 . 44

Proof. The proof follows as in [5], by using the technique as in [2]; see also [3]. 
�
By using standard arguments we can then conclude the energy error estimate 45

‖u−uh‖DG ≤ chmin{s,p+1}−1|u|Hs(Q) 46

when assuming u ∈ Hs(Q) for some s≤ p+ 1, and, by applying the Aubin–Nitsche 47

trick, for ε =−1, 48

||u−uh||L2(Ω) ≤ chmin{s,p+1} |u|Hs(Q) . (5)

To illustrate the proposed DG finite element method in space and time as well as the 49

given error estimates we consider a first numerical example for the initial boundary 50

value problem (1)–(3) for n = 1 and Ω = (0,1), T = 1. This implies Q = (0,1)2. The 51

given data f and u0 are chosen such that the solution is given as 52

u(x, t) = sin(πx)(1− t)3/4 ∈ H1.25−ε̄(Q) with ε̄ > 0. 53

Starting from a triangulation of Q = (0,1)2 into four triangles we consider a se- 54

quence of several uniform refinement steps to analyze the convergence behavior of 55

the presented method. Using piecewise linear basis functions, i.e. p = 1, ε =−1 and 56

σ = 10, the numerical results are given in Table 1 which confirm the convergence 57

rate of 1.25 as predicted by the error estimate (5). 58

level elements dof ||u−uh||L2(Q) eoc
0 4 8 2.2679−1 −
1 16 40 5.1354−2 2.14
2 64 176 1.3107−2 1.97
3 256 736 3.4813−3 1.91
4 1024 3008 9.7383−4 1.84
5 4096 12160 3.0406−4 1.68
6 16384 48896 1.0923−4 1.48
7 65536 196096 4.3315−5 1.33
8 262144 785408 1.7935−5 1.27
9 1048576 3143680 7.5278−6 1.25
10 4194304 12578816 3.1694−6 1.25
11 16777216 50323456 1.3345−6 1.25

Table 1. Numerical results for p = 1, ε =−1 and σ = 10.
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2 A Hybrid Space-Time Domain Decomposition Method 59

The presented space–time method (4) results in a large linear system of algebraic 60

equations. For its iterative solution we introduce a hybrid formulation as in [1, 2]. 61

Therefore we subdivide the space–time domain Q into P non–overlapping subdo- 62

mains Qi, i = 1, . . . ,P, 63

Q =
P⋃

i=1

Qi, Qi∩Q j = /0 for i 	= j. 64

By 65

Γ :=
P⋃

i=1

Γi with Γi := ∂Qi \ ∂Q 66

we denote the interface of the space–time domain decomposition, see Fig. 1. 67

Fig. 1. Space–time decomposition of Q and the interface Γ
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With respect to the interface Γ we introduce the discrete function space of piecewise 68

polynomials of order p, 69

Sp
h(Γ ) :=

{
v ∈ L2(Γ ) : v|e ∈ Pp(e) for all e ∈IN with e⊆ Γ

}
. 70

For the solution of the local partial differential equations in all subdomains Qi we 71

apply the space–time method as described by the variational formulation (4). For this 72

we denote by a(i)DG(·, ·) the restriction of the bilinear form aDG(·, ·) on the subdomain 73

Qi, i = 1, . . . ,P, i.e. 74

a(i)DG(uh,vh) :=−
N

∑
k=1

∫
τk∩Qi

uh ∂t vh dxdt +
∫

ΣT∩∂Qi

uh vh dx

+ ∑
e∈IN

∫
e∩Qi

nt {uh}up
e [vh]e ds(x,t) +

N

∑
k=1

∫
τk∩Qi

∇xuh ·∇xvh dxdt

− ∑
e∈IN

∫
e∩Qi

[〈nx ·∇xuh〉e [vh]e− ε [uh]e 〈nx ·∇xvh〉e]ds(x,t)

+
σ
h ∑

e∈IN

∫
e∩Qi

|nx|2 [uh]e[vh]eds(x,t).
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Accordingly, the restriction of the linear form F(·) on a subdomain Qi is given by 75

F (i)(vh) :=
∫

Qi

f vh dxdt +
∫

Σ0∩∂Qi

u0 vh dx. 76

For the coupling of the local fields we first introduce a new unknown on the interface, 77

λ := 〈u〉e = 1
2

[
u|τk

+ u|τ�
]

on Γ ∩ e. 78

With this we can rewrite the jump of a function as 79

[u]e = u|τk
−u|τ� = 2

(
u|τk
−λ

)
= 2

(
λ −u|τ�

)
on Γ ∩ e. 80

Therefore we obtain for the coupling terms related to the Laplace operator 81

∑
e∈IN

∫
e∩Γ
〈nx ·∇xu〉e [v]e ds(x,t) =

N

∑
k=1

∫
∂τk∩Γ

nk,x ·∇xu(v− μ)ds(x,t),

∑
e∈IN

∫
e∩Γ

[u]e 〈nx ·∇xv〉e ds(x,t) =
N

∑
k=1

∫
∂τk∩Γ

(u−λ )nk,x ·∇xvds(x,t),

∑
e∈IN

∫
e∩Γ
|nx|2 [u]e [v]e ds(x,t) = 2

N

∑
k=1

∫
∂τk∩Γ

|nk,x|2 (u−λ )(v− μ)ds(x,t).

For the classical solution u of the transient heat equation (1)–(3) there obviously 82

holds for an interior facet e ∈IN 83

λ = 〈u〉e = 1
2

[
u|τk

+ u|τ�
]
= u|τk

= u|τ� on e. 84

Therefore the upwind in time can be written as 85

{u}up
e =

{
u|τk

for nt ≥ 0,

u|τ� for nt < 0
=

{
u|τk

for nk,t ≥ 0,

λ for nk,t < 0
=: {u/λ}up

∂τk
on Γ ∩ e. 86

The coupling containing the upwind part can now be expressed by 87

∑
e∈IN

∫
e∩Γ

nt {u}up
e [v]e ds(x,t) =

N

∑
k=1

∫
∂τk∩Γ

nk,t {u/λ}up
∂τk

(v− μ)ds(x,t). 88

With respect to each subdomain Qi we therefore can define the bilinear form 89

c(i)(uh,λh;vh,μh) :=
N

∑
k=1

τk⊆Qi

∫
∂τk∩Γ

nk,t {uh/λh}up
∂τk

(vh− μh)ds(x,t)

−
N

∑
k=1

τk⊆Qi

∫
∂τk∩Γ

[
nk,x ·∇xuh (vh− μh)− ε(uh−λh)nk,x ·∇xvh

]
ds(x,t)

+
2σ
h

N

∑
k=1

τk⊆Qi

∫
∂τk∩Γ

|nk,x|2 (uh−λh)(vh− μh)ds(x,t).
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Hence we can write the discrete hybrid space–time variational formulation to find 90

uh ∈ Sp
h,0(TN) and λh ∈ Sp

h(Γ ) satisfying 91

P

∑
i=1

[
a(i)DG(uh,vh)+ c(i)(uh,λh;vh,μh)

]
=

P

∑
i=1

F (i)(vh) (6)

for all vh ∈ Sp
h,0(TN) and μh ∈ Sp

h(Γ ). As in [2] we can prove unique solvability of the 92

hybrid scheme (6). Moreover, related error estimates as derived for the DG scheme 93

remain valid. 94

The discrete variational formulation (6) is equivalent to the solution of the linear 95

equations 96⎛
⎜⎜⎜⎜⎜⎜⎝

A(1)
II A(1)

IΓ
A(2)

II A(2)
IΓ

. . .
...

A(P)
II A(P)

IΓ
A(1)

Γ I A(2)
Γ I · · · A(P)

Γ I AΓ Γ

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

u(1)
I

u(2)
I
...

u(P)
I

λΓ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

f(1)I

f(2)I
...

f(P)I

fΓ

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

where the local block matrices A(i)
II correspond to the local bilinear forms a(i)DG(·, ·) 97

and c(i)(·,0; ·,0), while the remaining block matrices describe the coupling across the 98

interface. For an appropriate choice of the DG parameters, see Lemma 1, the local 99

matrices A(i)
II are invertible. Hence we obtain the Schur complement system 100

[
AΓ Γ −

P

∑
i=1

A(i)
Γ I

(
A(i)

II

)−1
A(i)

IΓ

]
λΓ = fΓ −

P

∑
i=1

A(i)
Γ I

(
A(i)

II

)−1
f(i)I , (8)

with 101

u(i)
I =

(
A(i)

II

)−1 [
f(i)I −A(i)

IΓ λΓ

]
for i = 1, . . . ,P.

The inversion of the local matrices A(i)
II can be done in parallel either by using some 102

appropriate direct approach, or suitable iterative schemes. For the solution of the 103

global Schur complement system (8) we can use, for example the GMRES method. 104

3 Numerical Examples 105

To illustrate the hybrid domain decomposition approach we consider for n = 3 the 106

spatial domain Ω = (0,1)3 and T = 1, i.e. Q = (0,1)4. As initial triangulation for the 107

space-time domain we use 96 pentatopes of the same size, see also [4]. The initial 108

triangulation is used as a partition of the space-time domain into P = 96 subdomains, 109

which we keep fixed for all computations. As exact solution of the transient heat 110

equation (1) we now consider the smooth function 111

u(x, t) = sin(πx1)sin(πx2)sin(πx3)t
2. 112
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For the iterative solution of the Schur complement system (8) we use the GMRES 113

method without preconditioning with a relative error reduction of εGMRES = 10−8. In 114

the Tables 2 and 3 we present the iteration numbers of the GMRES method for dif- 115

ferent levels of a uniform refinement of the space–time mesh for p= 1 and p= 2. We 116

observe that the number of required iterations grows slightly indicating the need of 117

using an appropriate preconditioner. The results also show the optimal convergence 118

rates for the error in the L2(Q) norm when using linear and quadratic basis functions. 119

level elements dof u(i)
I dof λΓ iter. ||u−uh||L2(Q) eoc

0 96 192 768 68 6.120−2 −
1 1536 5376 6144 143 3.821−2 0.68
2 24576 104448 49152 197 1.356−2 1.49
3 393216 1818624 393216 294 4.024−3 1.75
4 6291456 30277632 3145728 475 1.111−3 1.86

Table 2. Numerical results with 96 subdomains for p = 1, ε =−1 and σ = 10.

level elements dof u(i)
I dof λΓ iter. ||u−uh||L2(Q) eoc

0 96 720 1920 404 4.199−2 −
1 1536 17280 15360 699 7.492−3 2.49
2 24576 322560 122880 900 1.005−3 2.90
3 393216 5529600 983040 1131 1.293−4 2.96

Table 3. Numerical results with 96 subdomains for p = 2, ε =−1 and σ = 10.

4 Conclusions 120

In this paper we have presented a hybrid DG domain decomposition approach for the 121

parallel solution of initial boundary value problems. Numerical examples for one– 122

and three–dimensional spatial domains indicate the accuracy and applicability of the 123

proposed method. However, the numerical results also indicate the need to use an 124

appropriate global preconditioner for the Schur complement system (8). Moreover, 125

when solving the coupled system (7) iteratively, suitable local preconditioners are 126

mandatory as well. A possible choice is to use space-time multigrid methods. Al- 127

though we have only considered uniform refinements in this paper, the proposed 128

approach is also applicable to non–uniform and adaptive refinements, see, for exam- 129

ple, [4]. For this we need to use suitable a posteriori error estimators, and the solution 130

algorithms need to be robust with respect to adaptive refinements. Although we have 131
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only considered the simple model problem of the transient heat equation, the pro- 132

posed approach can be extended to more complicated problems, see, e.g., [4] for a 133

first example for the transient Navier-Stokes system. 134
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