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Summary. The purpose of this paper is to introduce an overlapping Schwarz method for 7

vector field problems discretized with the lowest order Raviart-Thomas finite elements. The 8

coarse component of the preconditioner is based on energy-minimizing discrete harmonic 9

extensions and the local components consist of traditional solvers on overlapping subdomains. 10

The approach has a couple of benefits compared to the previous methods. The algorithm can 11

be implemented in an algebraic manner. Moreover, the method leads to a condition number 12

independent of the values and jumps of the coefficients across the interface between the sub- 13

structures. Supporting numerical examples to demonstrate the effectiveness are also presented. 14

1 Introduction 15

Domain decomposition methods can be categorized in two classes: overlapping 16

Schwarz methods with overlapping subdomains and iterative substructuring methods 17

with nonoverlapping subdomains. In this paper, we consider two level overlapping 18

Schwarz algorithms. Such methods were originally developed for scalar elliptic prob- 19

lems; see [11, 15] and references therein. Later these methods have also been consid- 20

ered for solving vector fields problems posed in H(div) and H(curl); see [1, 9, 13]. 21

Other types of algorithms, such as multigrid methods, classical iterative substruc- 22

turing methods, balancing Neumann-Neumann, and FETI methods, have also been 23

suggested in [3, 8, 12, 14, 16, 17]. Many nonoverlapping methods have been stud- 24

ied for discontinuous coefficients cases for vector fields problems. However, only 25

few methods were introduced for the overlapping Schwarz methods in case of coef- 26

ficients which have jumps. 27

In the domain decomposition theory, methods can often provide good scalability, 28

i.e., the condition number of the preconditioned system will depend only on the size 29

of the subdomain problems and not on any other parameters, e.g., the number of sub- 30

domains and jumps of the coefficients. For the purpose of handling the discontinuity, 31

we borrow the advanced coarse space techniques of [6, 7] based on discrete harmonic 32

extensions of coarse trace spaces developed for almost incompressible elasticity. 33

The rest part of this paper is organized as follows. We introduce a model prob- 34

lem and its finite element approximation in Sect. 2. In Sects. 3 and 4, we recall the 35
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overlapping Schwarz method and we suggest the alternative coarse algorithm, re- 36

spectively. We next present the numerical results in Sect. 5. Finally, the conclusion 37

of this paper is given in Sect. 6. 38

2 Discretized Problem 39

We consider the following second order partial differential equation for vector field 40

problem posed in H(div) in a bounded polyhedral domain Ω with a homogeneous 41

boundary condition: 42

Lu :=−grad(α divu)+β u = f in Ω , (1)

u ·n = 0 on ∂Ω .

Here we have positive coefficients α,β∈L∞(Ω) and assume that f is in (L2(Ω))3. 43

The main focus of our work is on the coefficients α and β which have jumps across 44

between the substructures. 45

The model problem (1) has many important applications, such as a mixed and 46

least-squares formulation of certain types of second order partial differential equa- 47

tions [5, 17]. There are other types of applications related to H(div), e.g., iterative 48

solvers for the Reissner-Mindlin plate and the sequential regularization method for 49

the Navier-Stokes equations. For more detail, see [2, 10]. 50

We next consider a variational formulation of (1): 51

a(u,v) :=
∫

Ω
α divudivvdx+β u ·vdx =

∫
Ω

f ·vdx, v ∈ H0(div;Ω). (2)

We consider the lowest order Raviart-Thomas elements, conforming in H(div), 52

to obtain a discretized problem; see [4, Chap. 3]. We note that the degrees of freedom 53

of the Raviart-Thomas elements are defined by the average values of the normal 54

components over the faces. 55

Let us consider the variational problem (2). Restricting to the finite element space 56

of the lowest order Raviart-Thomas elements with shape regular and quasi-uniform 57

meshes, we obtain the following linear system: 58

Au = f , (3)

where the matrix A is a stiffness matrix, u is a vector of degrees of freedom, and f is 59

a known vector obtained from f. We note that A is symmetric and positive definite. 60

3 Overlapping Schwarz Preconditioner 61

We consider a decomposition of the domain Ω into N nonoverlapping subdomains 62

Ωi, i = 1, · · · ,N. We next introduce extended subregions Ω ′i obtained from Ωi by 63

adding layers of elements and the interface Γ which is given by 64
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Γ =

(
N⋃

i=0

∂Ωi

)
\∂Ω . 65

We consider a two-level overlapping Schwarz algorithm to solve the linear sys- 66

tem (3). An overlapping Schwarz preconditioner usually has the following form: 67

P−1 = RT
0 A−1

0 R0 +
N

∑
i=1

RT
i A−1

i Ri, (4)

where A0 is the matrix of the global coarse problem, the Ai’s are obtained from local 68

subproblems related to the extended subdomains Ω ′i , and R0 and Ri’s are restriction 69

operators to the coarse space and local spaces, respectively; see [11, 15] for more 70

details. 71

In [9, 13], model problems were designed for constant coefficients and convex 72

domains to analyze the methods. In our work, we use more general assumptions: 73

convex subdomains and coefficients which have jumps across the interface Γ . 74

In order to deal with this situation, we consider an alternative coarse space 75

approach instead of traditional coarse interpolations. The basis functions for the 76

new algorithm are based on energy-minimizing discrete harmonic extensions with 77

given interface values. We use the corresponding discrete harmonic extensions of 78

the boundary values of standard basis functions to construct new basis functions. We 79

remark that this process can be performed locally and in parallel due to the fact that 80

the basis functions are supported in just two subdomains. We also note that we do 81

not need any coarse triangulation and this work can be done algebraically. With new 82

alternative basis functions, we obtain the operator R0 which defines the new basis 83

and the matrix A0 = R0ART
0 associated with the global coarse problem. 84

For the local components, we follow the traditional way. Each Ri is a rectangular 85

matrix with elements equal to 0 and 1 and provides the indices relevant to an indi- 86

vidual extended subdomain Ω ′i . Each Ai = RiART
i is just the principal minor of the 87

original stiffness matrix A defined by Ri. By using these matrices, we can build the 88

local component ∑N
i=1 RT

i A−1
i Ri of the Schwarz preconditioner. 89

4 The Coarse Component 90

In this section, we explain our approach in detail. We focus on the restriction operator 91

R0 onto the coarse space. Before we consider the alternative method, we introduce 92

the conventional method in [9, 13]. The restriction operator is obtained by the in- 93

terpolation from the subspaces defining the coarse component to the global space. 94

More precisely, R0 are exactly the coefficients obtained by interpolating the tradi- 95

tional coarse basis functions onto the fine mesh. We note that we need geometric 96

information, e.g., coordinate information, to construct R0. 97

Instead of the conventional coarse basis, we will use discrete harmonic exten- 98

sions to define the new coarse basis functions. We first consider two adjacent subdo- 99

mains Ωi and Ω j. We then have a coarse face Fi j = ∂Ωi ∩ ∂Ω j. We note that each 100
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coarse degree of freedom of our coarse component is related to each coarse face. Let 101

u denote the vector of degrees of freedom for the original problem. Similarly, we 102

consider the vectors of degrees of freedom u(i)I , u( j)
I , and uFi j associated with Ωi\Γ , 103

Ω j\Γ , and Fi j, respectively. We then have restriction matrices R(i)
I , R( j)

I , and RFi j , i.e., 104

u(i)I = R(i)
I u, u( j)

I = R( j)
I u, and uFi j = RFi j u. We note that each restriction matrix has 105

only one nonzero entry of unity per each row. We next introduce a submatrix of the 106

stiffness matrix A. It corresponds to the two subdomains which have Fi j in common: 107

⎡
⎢⎢⎣

A(i)
II 0 A(i)

IFi j

0 A( j)
II A( j)

IFi j

A(i)
Fi jI

A( j)
Fi jI

AFi jFi j

⎤
⎥⎥⎦ . 108

We choose uT
Fi j

= [1,1, · · · ,1] and introduce the local subproblems A(i)
II u(i)I + A(i)

IFi j
109

uFi j = 0 and A( j)
II u( j)

I +A( j)
IFi j

uFi j = 0 to consider discrete harmonic extensions; see [15, 110

Chap. 4.4]. Then, u(i)I and u( j)
I are completely determined by uFi j , i.e., u(i)I = EiuFi j 111

and u( j)
I = E juFi j , where Ei := −A(i)

II

−1
A(i)

IFi j
and E j :=−A( j)

II

−1
A( j)

IFi j
. We then obtain 112

a coarse basis ui j = R(i)
I

T
u(i)I +R( j)

I

T
u( j)

I +RT
Fi j

uFi j corresponding to Fi j. We can then 113

construct the following form of our coarse interpolation matrix R0 after the similar 114

process: 115

R0 :=

⎡
⎢⎢⎣

...
− uT

i j −
...

⎤
⎥⎥⎦ . 116

As we mentioned earlier, we can obtain the coarse matrix A0 by the Galerkin product 117

R0ART
0 . We remark that our alternative approach can be implemented in an algebraic 118

manner and in parallel. However, we need to solve additional local Dirichlet-type 119

subproblems to construct the coarse component compared to the conventional meth- 120

ods. 121

5 Numerical Experiments 122

We apply the overlapping Schwarz method with the energy-minimizing coarse space 123

to our model problem. We use Ω = (0,1)× (0,1)× (0,1) and the lowest order hex- 124

ahedral Raviart-Thomas elements. We decompose the domain into N×N×N iden- 125

tical subdomains. In each subdomain, we assume that the coefficients α and β are 126

constant. We consider cases where the coefficients have jumps across the interface 127

between the subdomains, in particular, a checkerboard distribution pattern. Each sub- 128

domain Ωi has side length H = 1/N and each mesh cube has h as a minimum side 129

length. We also introduce extended subdomains whose boundaries do not cut any 130



Page 385

UN
CO

RR
EC

TE
D

PR
O
O
F

An Alternative Coarse Space for OS Preconditioners for RT Vector Fields

mesh elements with an overlap parameter δ between subdomains. We use the pre- 131

conditioned conjugate gradient method to solve the preconditioned linear system 132

P−1Au = P−1 f . (5)

We stop the iteration when the residual l2-norm has been reduced by a factor of 10−6. 133

We perform two different kinds of experiments. We first fix the overlap parameter 134

H/δ and vary H/h. We next fix the size of H/h and use various size of H/δ . We 135

report the condition numbers estimated by the conjugate gradient method and the 136

number of iterations. Tables 1 and 3 show the first results and Tables 2 and 4 show 137

the results of the second experiments. 138

In the first set of experiments, we see that the condition numbers and the itera- 139

tion counts do not depend on the size of H/h. In the second set, we can conclude 140

that the condition numbers grow linearly with H/δ . For both cases, the condition 141

numbers and iteration counts are quite independent of coefficients and the jumps of 142

coefficients between the subdomains. 143AQ1

Table 1. Condition numbers and iteration counts. αi = 1 or specified values as indicated in a
checkerboard pattern, βi ≡ 1 , H

δ = 4, H = 1
3 , and h = 1

12 ,
1
24 ,

1
48

αi = 0.01 αi = 0.1 αi = 1 αi = 10 αi = 100
H
h cond iters cond iters cond iters cond iters cond iters

4 8.23 15 8.90 16 9.16 17 8.92 16 8.25 15
8 8.39 16 9.01 17 9.20 18 9.00 17 8.28 16
16 8.23 16 8.99 17 9.22 19 8.98 17 8.28 16

Table 2. Condition numbers and iteration counts. αi = 1 or specified values as indicated in a
checkerboard pattern, βi ≡ 1 , H

h = 16, H = 1
3 , and h = 1

48

tαi = 0.01 αi = 0.1 αi = 1 αi = 10 αi = 100
t

H
δ cond iters cond iters cond iters cond iters cond iters

t4 8.23 16 8.99 17 9.22 19 8.98 17 8.28 16
t8 10.86 16 13.27 18 14.06 22 14.16 18 14.10 16
t16 16.22 18 22.94 22 25.03 24 25.30 22 25.32 20

6 Conclusion 144

An alternative coarse space technique based on energy-minimizing discrete harmonic 145

extensions for overlapping Schwarz algorithm for vector field problems posed in 146
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Table 3. Condition numbers and iteration counts. βi = 1 or specified values as indicated in a
checkerboard pattern, αi ≡ 1 , H

δ = 4, H = 1
3 , and h = 1

12 ,
1

24 ,
1

48

βi = 0.01 βi = 0.1 βi = 1 βi = 10 βi = 100
H
h cond iters cond iters cond iters cond iters cond iters

4 8.18 15 8.36 16 9.16 17 8.68 17 8.36 16
8 8.18 17 8.46 18 9.20 18 8.65 18 8.37 18
16 8.18 17 8.45 18 9.22 19 8.62 18 8.37 18

Table 4. Condition numbers and iteration counts. βi = 1 or specified values as indicated in a
checkerboard pattern, αi ≡ 1 , H

h = 16, H = 1
3 , and h = 1

48

βi = 0.01 βi = 0.1 βi = 1 βi = 10 βi = 100
H
δ cond iters cond iters cond iters cond iters cond iters

4 8.18 17 8.45 18 9.22 19 8.62 18 8.37 18
8 8.50 17 9.98 18 14.06 22 13.48 21 9.43 19

16 9.34 17 13.13 21 25.03 24 24.79 22 12.56 19

H(div) has been introduced and implemented. The numerical results show the use- 147

fulness of our method even in the presence of jumps of the coefficients between the 148

substructures. 149
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