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1 Introduction 12

In this short note, we present new weighted Poincaré inequalities (WPIs) with 13

weighted averages that allow a robustness analysis of dual-primal finite element tear- 14

ing and interconnecting (FETI-DP) methods in certain cases where jumps of coeffi- 15

cients are not aligned with the subdomain partition. 16

Let Ω be a bounded Lipschitz domain in R
2 or R3. We consider the weak form 17

of the scalar elliptic PDE 18

−div(α ∇u) = f in Ω , (1)

with a uniformly positive diffusion coefficient α ∈ L∞(Ω) that is piecewise constant 19

with respect to a (possibly rather fine) partitioning of Ω . The discretization by con- 20

tinuous and piecewise linear finite elements (FEs) on a mesh T (Ω) leads to the 21

sparse (but in general large) linear system 22

Ku = f. 23

We consider FETI-DP solvers (see [2, 4, 5]) for the fast (and parallel) solution 24

of this system, and we follow the structure described in [12, Sect. 6.4]. To this end, 25

we partition the domain Ω into non-overlapping subdomains Ωi, i = 1, . . . ,N such 26

that the global mesh T (Ω) resolves the interface
⋃

i�= j ∂Ωi ∩ ∂Ω j. The interface 27

itself can be divided into subdomain vertices, edges, and faces (for d = 3), cf. [12, 28

Sect. 4.2]. 29

Without loss of generality, we assume that α is constant on each element of 30

T (Ω). Crucially, we do not assume that α is constant on each subdomain. However, 31

we need assumptions on the kind of jumps. Let αi denote the restriction of α to Ωi 32

and note that it has a well-defined trace in L2(∂Ωi). For each subdomain edge (face) 33
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(c)(b)(a)

Fig. 1. Different types of coefficient jumps along an edge between two subdomains: (a) across
(b) along (c) both across and along

E on Ωi, let V h(E ) denote the restriction of the global FE space to E and let us define 34

the weighted average 35

vE ,αi :=

∫
E αi v∫
E αi

for v ∈V h(E ). (2)

Assumption A1. Whenever two Ωi and Ω j share an edge (face) E , the weighted 36

averages of any function v ∈V h(E ) coincide: vE ,αi = vE ,α j . 37

A sufficient condition for Assumption A1 is that the coefficient jumps either 38

across or along, but not both at the same time. For an illustration see Fig. 1. Our 39

assumptions rules out situations of type (c). 40

Following [12, Algorithm B], we define the primal space ŴΠ spanned by the 41

vertex nodal basis functions at subdomain vertices, the subdomain edge cut-off 42

functions and subdomain face cut-off functions (all of them extended discrete α- 43

harmonically from the interface to the subdomain interiors). The dual space WΔ 44

contains FE functions that are discontinuous across the subdomain interfaces with 45

vanishing α-weighted averages over the subdomain faces, edges, and vertices. We 46

formally perform a change of basis, such that we have a splitting of the degrees of 47

freedom (DOFs) into primal and dual ones, and work in the space W̃ = ŴΠ ⊕WΔ . 48

Let B : W̃ →U be the usual jump operator. The FETI-DP system 49

F λ = BK̂−1 f̂ (3)

is solved by preconditinioned conjugate gradients, where F := BK̂−1B� and where 50

K̂, f̂ denote the stiffness matrix and load vector partially assembled at the primal 51

DOFs, respectively. The overall solution is then given by 52

u = K̂−1( f̂ −B�λ ). 53

Next, we define a FETI-DP preconditioner that is slightly modified to allow for 54

certain coefficient jumps (cf. [3, 7]). Let i = 1, . . . ,N be fixed and let T (Ωi) denote 55

the mesh restricted to subdomain Ωi. For each mesh node xh on Ω i, we set 56

α̂i(x
h) := max

T∈T (Ωi):xh∈T
α|T . (4)

Furthermore, if Nxh denotes the index set of subdomains sharing the mesh node xh, 57

we define the weighted counting function 58
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δ †
i (x

h) :=

⎧⎪⎨
⎪⎩

α̂i(xh)

∑ j∈N
xh

α̂ j(xh)
, if xh lies on Ω i ,

0, otherwise.

59

Using these counting functions we define the scaled jump operator BD according 60

to [12, Sect. 6.4.1] (for details see also [9] where the same scaled jump operator 61

was used to define a one-level FETI preconditioner). The FETI-DP preconditioner is 62

finally given by 63

M−1 := BD S B�D , (5)

where S = diag(Si)
N
i=1 is the block-diagonal Schur complement of the block stiffness 64

matrix K = diag(Ki)
N
i=1, eliminating the interior DOFs in each subdomain. Alterna- 65

tively, one may replace B and BD in (3), (5) by the respective operators which only 66

act on the dual DOFs, which reduces the number of redundancies in λ . 67

2 Weighted Poincaré Inequalities with Weighted Averages 68

Let D be a bounded Lipschitz polytope and let {Y�}n
�=1 be a subdivision of D into 69

open Lipschitz polytopes such that 70

α|Y� = α� = const. (6)

Furthermore, let X ⊂ ∂D be a manifold of dimension 0 ≤ dX ≤ d− 1 (usually a 71

vertex, an open subdomain edge or an open face, or a union of these). We define 72

X� := Y�∩X . 73

Some of these sets may be empty or have lower dimension than X . However, with 74

the index set IX := {� : measdX
(X�)> 0} we can write 75

X =
⋃

k∈IX
X k . 76

In general, for different indices k, � ∈ IX , the manifolds Xk and X� may have a 77

non-trivial intersection or even coincide. For simplicity, we assume that 78

k �= � ∈ IX =⇒ measdX
(Xk ∩X�) = 0. 79

The general case needs more formalism and will be treated in an upcoming paper 80

[10]. Finally, we can define a meaningful trace αtr ∈ L∞(X ) of α by 81

αtr(x) = αk for x ∈Xk . 82

Let {V h(D)}h be a family of H1-conforming FE spaces associated with a quasi- 83

uniform family of triangulations of D. For v ∈ V h(D), we define the weighted 84

(semi)norms and the weighted average on X by 85
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‖v‖2
L2(D),α :=

∫
D

α v2 , |v|2H1(D),α :=
∫

D
α |∇v|2 and vX ,αtr :=

∫
X αtr v∫
X αtr

. 86

We are interested in the following WPI with weighted average: 87

‖u−uX ,αtr‖2
L2(D),α ≤ CP,α(D,X ;h)diam(D)2 |u|2H1(D),α ∀u ∈V h(D). (7)

In particular, we are interested under which assumptions the parameter CP,α (D,X ;h) 88

is independent of the values {α�}. 89

Sufficient conditions for robustness. We need two crucial assumptions for (7) to 90

be independent of the values {α�}. The first assumption is a quasi-monotonicity 91

assumption on α . It has been introduced in [1] and generalized in [4, 8]. The second 92

assumption states that X “sees” the largest coefficient. 93

Definition 1. Let 0 ≤ m < d and let �∗ := argmax
1≤�≤s

α� denote the index of the largest 94

coefficient.4 95

(a) We call the region P�1,�s := (Y�1 ∪ . . .∪Y�s)
◦, 1 ≤ �1, . . . , �s ≤ n a type-m quasi- 96

monotone path from Y�1 to Y�s (with respect to α), if 97

(i) the regions Y�i and Y�i+1 share a common m-dimensional manifold, and 98

(ii) α�1 ≤ α�2 ≤ . . .≤ α�s . 99

(b) We say that α is type-m quasi-monotone on D, if for all k = 1, . . . ,n there exists 100

a quasi-monotone type-m path from Yk to Y�∗ . 101

Assumption A2. α is type-m quasi-monotone on D for some 0≤ m < d. 102

Assumption A3. measdX
(X ∩Y�∗)> 0. 103

In order to formulate our main theorem, we first need some definitions of gener- 104

alized Poincaré constants/parameters. 105

Definition 2. (i) For any bounded Lipschitz domain Y ⊂R
d let CP(Y ) be the small- 106

est constant such that 107

‖v− vY‖2
L2(Y ) ≤ CP(Y )diam(Y )2 |v|2H1(Y ) ∀v ∈H1(Y ). 108

(ii) Let Z be the finite union of bounded Lipschitz polytopes such that Z is con- 109

nected, and let {T h(Z)}h be a quasi-uniform family of triangulations of Z 110

with the associated continuous piecewise linear FE spaces {V h(Z)}h. Let X, 111

W ⊂ Z be manifolds/subdomains of (possibly different) dimension ∈ {0, . . . ,d}. 112

Let CP(Z,X ,W ;h) be the best parameter such that 113

‖v− vX‖2
L2(W) ≤ CP(Z,X ,W ;h)

|W |
|Z| diam(Z)2 |u|2H1(Z) ∀v ∈V h(Z). 114

|W | and |Z| denote the measures of W and Z (in the respective dimension). 115

4 We can assume without loss of generality that �∗ is unique. By definition, type-m quasi-
monotonicity implies that otherwise all maximal subregions can be combined into a single
subregion.
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If Z is connected and if the dimensions of X and W are ≥ d − 1, we can define 116

a constant CP(Z,X ,W ) independent of the discretization parameter h such that the 117

inequality in Definition 2(ii) holds for all functions in H1(Z). 118

Theorem 1. Let Assumptions A2 and A3 be satisfied. Then the parameter 119

CP,α(D,X ;h) in formula (7) is independent of the values {α�}n
�=1 and 120

CP,α (D,X ;h) ≤ 2
[
C∗,1(h)+C∗,2(h)

]
(8)

with 121

C∗,1(h) :=
n

∑
�=1

|Y�|diam(P�,�∗)2

|P�,�∗|diam(D)2 CP(P�,�∗ ,X�∗ ,Y�;h),

C∗,2(h) :=
|D|
|X�∗ | ∑

k∈IX

|Xk|diam(Pk,�∗)
2

|Pk,�∗|diam(D)2 CP(Pk,�∗ ,X�∗ ,Xk;h).

Proof. Without loss of generality, we may assume that uX ,αtr = 0. For each index 122

�= 1, . . . ,n, 123

1
2 ‖u‖2

L2(Y�)
≤ ‖u−uX�∗ ‖2

L2(Y�)
+ |Y�|

(
uX�∗ )2 .

Due to Assumption A2, there is a quasi-monotone path from Y� to Y�∗ . With c�,�∗ := 124

CP(P�,�∗ ,X�∗ ,Y�;h), summation over �= 1, . . . ,n yields 125

1
2 ‖u‖2

L2(D),α ≤
n

∑
�=1

c�,�∗
|Y�|
|P�,�∗| diam(P�,�∗)

2 α�|u|2H1(P�,�∗)︸ ︷︷ ︸
≤ |u|2H1(D),α

+
n

∑
�=1

α� |Y�|
︸ ︷︷ ︸
≤ α�∗ |D|

(
uX�∗ )2,

where we have used Definition 2(ii) and the quasi-monotonicity of P�,�∗. The first 126

sum is bounded by C∗,1(h)diam(D)2 |u|2
H1(D),α . To bound the remaining term, we 127

use Cauchy’s inequality and the definition of αtr: 128

α�∗ |D|
(
uX�∗

)2 ≤ |D|
|X�∗ | α�∗‖u‖2

L2(X�∗)
≤ |D|
|X�∗ | ‖u‖

2
L2(X ),αtr

.

A variational argument yields 129

‖u‖2
L2(X ),αtr

≤ ‖u−uX ,αtr︸ ︷︷ ︸
=0

‖2
L2(X ),αtr

= inf
c∈R
‖u− c‖2

L2(X ),αtr

≤ ‖u−uX�∗ ‖2
L2(X ),αtr

= ∑
k∈IX

αk ‖u−uX�∗ ‖2
L2(Xk)

.

Now, we have 130

αk ‖u−uX�∗ ‖2
L2(Xk)

≤ CP(Pk,�∗ ,X�∗ ,Xk;h)
|Xk|
|Pk,�∗ | diam(Pk,�∗)

2 αk |u|2H1(Pk,�∗ )
. 131

Using the quasi-monotonicity of α on Pk,�∗ finally leads to (8). 132
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Necessity of the conditions. As discussed in [8, Sect. 3.1], Assumption A2 is neces- 133

sary to ensure that CP,α(D,X ;h) is independent of the values {α�}. 134

To see that A3 is necessary as well, assume that measdX
(X ∩Y�∗) = 0. We 135

choose a function u which is one on Y�∗ . Since the average functional v �→ vX ,αtr is 136

independent of α�∗ , we can prescribe values of u on X such that uX ,αtr = 0 and 137

continuously extend u into D ⊂ Y�∗ . The whole construction of u is independent 138

of α�∗ , Since ∇u = 0 on Y�∗ , the seminorm |u|H1(D),α is independent of α�∗ as well. 139

However, ‖u‖2
L2(D),α ≥α�∗ |Y�∗ |. Therefore, if α ≤αk on D\Y�∗ , then CP,α(D,X ;h)= 140

O
(α�∗

αk

)
for α�∗/αk → ∞. This means that Assumptions A2 and A3 in some sense 141

characterize the robustness of the WPI with weighted average. 142

3 Robustness Proof of FETI-DP 143

To analyze the robustness of FETI-DP, we need the following assumption. 144

Assumption A4. For each subdomain Ωi and for each subdomain edge (face) E of 145

Ωi, there is a Lipschitz domain Di,E ⊂Ωi, such that E ⊂ ∂Di,E and Assumptions A2 146

and A3 are satisfied for D = Di,E and X = E . The union of all the regions Di,E 147

covers a boundary layer Ωi,ηi of width ηi ≥ h of Ωi (see e.g. [6, Definition 2.6]). 148

Theorem 2. Let Assumptions A1 and A4 hold. Then the condition number κ(M−1 F) 149

for the FETI-DP method is independent of the values of the coefficient α , in partic- 150

ular of any non-resolved jumps. 151

Due to space limitations we only give a sketch of the proof. A detailed proof will 152

be given in [10], together with a more detailed statement of Theorem 2 that makes 153

precise the dependence of κ(M−1 F) on geometric parameters, such as the ratios 154

diam(Ωi)/h and diam(Ωi)/ηi. 155

Let Hi denote the discrete α-harmonic extension from ∂Ωi to Ωi and let 156

|w|2S :=
N

∑
i=1

|Hiw|2H1(Ωi),α
. 157

Then, following [12, Sect. 6.4.3], a bound of the kind 158

|PD w|2S ≤ ω |w|2S ∀w ∈ W̃ , (9)

where PD := B�D B, implies that κ(M−1 F)≤ ω . 159

As in the proof of [9, Lemma 5.6; formula (5.24)], we can introduce a set of 160

cut-off functions associated with each subdomain edge (face) E whose support is 161

contained in Di,E . It then follows that, for any w ∈ ŴΠ ⊕WΔ , 162

|PD w|2S ≤ C
N

∑
i=1

[
|Hiwi|2H1(Ωi),α

+∑
E

1
diam(Ωi)2 ‖Hiwi−wi

E ‖2
L2(Di,E ),α

]
, 163

where C depends on diam(Ωi)/h and diam(Ωi)/ηi, but it is independent of the values 164

{α�}. By Theorem 1, we can bound each of the weighted L2 norms by the weighted 165

H1 seminorm of Hiwi, and thus obtain (9). 166
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α1

α1

1 α

−1α

α 2
−1

Fig. 2. Edge-island (left), cross-point island (middle), complicated coefficient (right)

t1.1α condition #iterations
t1.21 1.58 10
t1.3101 1.57 10
t1.4103 1.56 10
t1.5105 1.56 10
t1.6107 1.56 10
t1.710−1 1.70 10
t1.810−3 1.74 10
t1.910−5 1.74 10
t1.1010−7 1.74 11

t2.1α condition #iterations
t2.21 1.58 10
t2.3101 1.59 10
t2.4103 1.59 10
t2.5105 1.59 10
t2.6107 1.59 10
t2.710−1 1.57 10
t2.810−3 1.57 10
t2.910−5 1.57 10
t2.1010−7 1.57 10

t3.1α condition #iterations
t3.21 1.58 10
t3.3101 1.61 11
t3.4102 1.62 11
t3.5103 1.62 11
t3.6104 1.62 11
t3.710−1 1.62 11
t3.810−2 1.60 11
t3.910−3 1.59 11
t3.1010−4 1.59 11

Table 1. Edge-island (left), crosspoint-island (middle), complicated coefficient (right), H/h=
32.

4 Numerical Results 167

We provide results for the three examples shown in Fig. 2. Note that in the last 168

example, the coefficient is not quasi-monotone on one of the subdomains, but sat- 169

isfies Assumptions A1 and A4. In our implementation we used PARDISO [11]. 170

The estimated condition numbers and the number of PCG iterations are displayed 171

in Table 1. They clearly confirm Theorem 2. 172

5 Conclusion 173

We analyse a FETI-DP method for the scalar elliptic PDE (1) with possible jumps in 174

the diffusion coefficient alpha. We show that provided weighted edge/face averages 175

are used, the condition number of the preconditioned system is independent of coef- 176

ficient jumps. The essential assumptions are A1 and A4, i.e., the coefficient does not 177

jump both across and along any interfaces between two subdomains and the coeffi- 178

cient is quasi-monotone in the vicinity of any edge/face within each subdomain. The 179

key theoretical tool that is of interest in itself is a novel weighted Poincaré inequality 180

for functions with suitably chosen vanishing weighted face/edge averages. We are 181
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able to show that under Assumption A4, the Poincare constant of each neighborhood 182

Di,E can be bounded independent of jumps. 183

As in our previous work [8], the Poincaré constants (and thus also the condition 184

number) will also depend on the “geometry” of the coefficient variation. In partic- 185

ular, for piecewise constant coefficients it will in general depend on the geometry 186

of the subregions where the coefficient is constant. We did not give details of this 187

dependence here, but this will be done in an upcoming paper [10] (using [8]). Cases 188

where the coefficient jumps both along and across subdomain interfaces appear to be 189

substantially harder to be treated and are also the subject of our future investigations. 190
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