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1 Introduction 8

Many domain decomposition techniques for contact problems have been proposed 9

on discrete level, particularly substructuring and FETI methods [1, 4]. 10

Domain decomposition methods (DDMs), presented in [2, 10, 11, 16] for unilat- 11

eral two-body contact problems of linear elasticity, are obtained on continuous level. 12

All of them require the solution of nonlinear one-sided contact problems for one or 13

both of the bodies in each iteration. 14

In works [6, 14, 15] we have proposed a class of penalty parallel Robin–Robin 15

domain decomposition schemes for unilateral multibody contact problems of linear 16

elasticity, which are based on penalty method and iterative methods for nonlinear 17

variational equations. In each iteration of these schemes we have to solve in a parallel 18

way some linear variational equations in subdomains. 19

In this contribution we generalize domain decomposition schemes, proposed in 20

[6, 14, 15] to the solution of unilateral and ideal contact problems of nonlinear elastic 21

bodies. We also present theorems about the convergence of these schemes. 22

2 Formulation of Multibody Contact Problem 23

Consider a contact problem of N nonlinear elastic bodies Ωα ⊂ R
3 with sectionally 24

smooth boundaries Γα , α = 1,2, . . . ,N (Fig. 1). Denote Ω =
⋃N

α=1 Ωα . 25

A stress-strain state in point x = (x1,x2,x3)
� of each body Ωα is defined by the 26

displacement vector uα = uα i ei , the tensor of strains ε̂εεα = εα i j ei e j and the tensor 27

of stresses σ̂σσα = σα i j ei e j . These quantities satisfy Cauchy relations, equilibrium 28

equations and nonlinear stress-strain law [8]: 29

σα i j = λα δi j Θα + 2 μα εα i j−2 μα ωα(eα)eα i j , i, j = 1,2,3 , (1)

where Θα = εα 11 + εα 22 + εα 33 is the volume strain, λα(x) > 0, μα(x) > 0 are 30

bounded Lame parameters, eα i j = εα i j− δi j Θα
/

3 are the components of the strain 31
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Fig. 1. Contact of several bodies

deviation tensor, eα =
√

2gα
/

3 is the deformation intensity, gα = (εα11− εα22)
2 + 32

(εα22− εα33)
2 +(εα33− εα11)

2 +6(ε2
α12 + ε2

α23+ ε2
α31) , and ωα(z) is nonlinear dif- 33

ferentiable function, which satisfies the following properties: 34

0≤ ωα(z)≤ ∂ (zωα(z))
/

∂ z < 1 , ∂ (ωα(z))
/

∂ z≥ 0 . (2)

On the boundary Γα let us introduce the local orthonormal basis ξξξ α , ηηηα , nα , 35

where nα is the outer unit normal to Γα . Then the vectors of displacements and 36

stresses on the boundary can be written in the following way: uα = uα ξ ξξξ α + 37

uαη ηηηα + uαn nα , σσσα = σ̂σσα ·nα = σαξ ξξξ α +σαη ηηηα +σαn nα . 38

Suppose that the boundary Γα of each body consists of four disjoint parts: Γα = 39

Γ u
α
⋃

Γ σ
α

⋃
Γ I

α
⋃

Sα , Γ u
α �= /0, Γ u

α = Γ u
α , Γ I

α
⋃

Sα �= /0, where Sα =
⋃

β∈Bα Sαβ , and 40

Γ I
α =

⋃
β ′∈Iα Γαβ ′ . Surface Sαβ is the possible unilateral contact area of body Ωα with 41

body Ωβ , and Bα ⊂ {1,2, . . . ,N} is the set of the indices of all bodies in unilateral 42

contact with body Ωα . Surface Γαβ ′ = Γβ ′α is the ideal contact area between bodies 43

Ωα and Ωβ ′ , and Iα ⊂ {1,2, . . . ,N} is the set of the indices of all bodies which have 44

ideal contact with Ωα . 45

We assume that the areas Sαβ ⊂ Γα and Sβ α ⊂ Γβ are sufficiently close (Sαβ ≈ 46

Sβ α), and nα(x)≈−nβ (x′), x ∈ Sαβ , x′ = P(x) ∈ Sβ α , where P(x) is the projection 47

of x on Sαβ [12]. Let dαβ (x) = ±‖x−x′‖2 be a distance between bodies Ωα and 48

Ωβ before the deformation. The sign of dαβ depends on a statement of the problem. 49

We consider homogenous Dirichlet boundary conditions on the part Γ u
α , and Neu- 50

mann boundary conditions on the part Γ σ
α : 51

uα(x) = 0, x ∈ Γ u
α ; σσσα(x) = pα(x), x ∈ Γ σ

α . (3)

On the possible contact areas Sαβ , β ∈ Bα , α = 1,2, . . . ,N the following nonlin- 52

ear unilateral contact conditions hold: 53

σαn(x) = σβ n(x
′)≤ 0 , σα ξ (x) = σβ ξ (x

′) = σα η(x) = σβ η(x
′) = 0 , (4)

54

uαn(x)+ uβ n(x
′)≤ dαβ (x) , (5)
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55(
uαn(x)+ uβ n(x

′)−dαβ (x)
)

σαn(x) = 0 , x ∈ Sαβ , x′ = P(x) ∈ Sβ α . (6)

On ideal contact areas Γαβ ′ = Γβ ′α , β ′ ∈ Iα , α = 1,2, . . . ,N we consider ideal 56

mechanical contact conditions: 57

uα(x) = uβ ′(x) , σσσα(x) =−σσσβ ′(x), x ∈ Γαβ ′ . (7)

3 Penalty Variational Formulation of the Problem 58

For each body Ωα consider Sobolev space Vα = [H1(Ωα)]
3 and the closed subspace 59

V 0
α = {uα ∈Vα : uα = 0 on Γ u

α }. All values of the elements uα ∈ Vα , uα ∈ V 0
α on 60

the parts of boundary Γα should be understood as traces [9]. 61

Define Hilbert space V0 = V 0
1 × . . .×V 0

N with the scalar product (u ,v)V0
= 62

∑N
α=1 (uα ,vα)Vα

and norm ‖u‖V0
=

√
(u ,u)V0

, u,v ∈ V0. Introduce the closed con- 63

vex set of all displacements in V0, which satisfy nonpenentration contact condi- 64

tions (5) and ideal kinematic contact conditions: 65

K =
{

u ∈V0 : uα n + uβ n ≤ dαβ on Sαβ , uα ′ = uβ ′ on Γα ′β ′
}
, (8)

where {α, β} ∈Q, Q = {{α,β} : α ∈ {1,2, . . . ,N} , β ∈ Bα}, {α ′, β ′} ∈QI , QI = 66

{{α ′,β ′} : α ′ ∈ {1,2, . . . ,N} , β ′ ∈ Iα}, and dαβ ∈ H1/2
00 (Ξα), Ξα = int(Γα \Γ u

α ). 67

Let us introduce bilinear form A(u,v) = ∑N
α=1 aα(uα ,vα), u,v ∈V0, which rep- 68

resents the total elastic deformation energy of the system of bodies, linear form 69

L(v) = ∑N
α=1 lα(vα), v ∈ V0, which is equal to the external forces work, and non- 70

quadratic functional H (v) = ∑N
α=1 hα(vα), v∈V0, which represents the total nonlin- 71

ear deformation energy: 72

aα(uα ,vα) =

∫
Ω α

[λαΘα(uα)Θα(vα)+ 2 μα ∑
i, j

εα i j(uα)εα i j(vα) ] dΩ , (9)

73

lα(vα) =
∫

Ωα
fα ·vα dΩ +

∫
Γ σ

α
pα ·vα dS , (10)

74

hα(vα) = 3
∫

Ωα
μα

∫ eα (vα )

0
zωα (z) dz dΩ , (11)

where pα ∈ [H−1/2
00 (Ξα)]

3, and fα ∈ [L2(Ωα)]
3 is the vector of volume forces. 75

Using [12], we have shown that the original contact problem has an alternative 76

weak formulation as the following minimization problem on the set K: 77

F(u) = A(u,u)/2−H(u)−L(u)→ min
u∈K

. (12)

Bilinear form A is symmetric, continuous with constant MA > 0 and coercive 78

with constant BA > 0, and linear form L is continuous. Nonquadratic functional H is 79

doubly Gateaux differentiable in V0: 80
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H ′(u,v) = ∑
α

h′α(uα ,vα), H ′′(u,v,w) = ∑
α

h′′α(uα ,vα ,wα), u,v,w ∈V0, (13)

81

h′α(uα ,vα) = 2
∫

Ωα
μα ωα(eα(uα)) ∑

i, j

eα i j(uα)eα i j(vα) dΩ . (14)

Moreover, we have proved that the following conditions hold: 82

(∃C > 0)(∀u ∈V0) {(1−C)A(u,u)≥ 2H (u) } , (15)
83

(∀u ∈V0) (∃R > 0)(∀v ∈V0)
{∣∣H ′(u,v)∣∣≤ R‖v‖V0

}
, (16)

84

(∃D > 0)(∀u,v,w ∈V0)
{∣∣H ′′(u,v,w)

∣∣≤ D‖v‖V0
‖w‖V0

}
, (17)

85

(∃B > 0)(∀u,v ∈V0)
{

A(v,v)−H ′′(u,v,v)≥ B‖v‖2
V0

}
. (18)

From these properties, it follows that there exists a unique solution ū ∈ K of min- 86

imization problem (12), and this problem is equivalent to the following variational 87

inequality, which is nonlinear in u: 88

A(u,v−u)−H ′(u,v−u)−L(v−u)≥ 0, ∀v ∈ K, u ∈ K . (19)

To obtain a minimization problem in the whole space V0, we apply a penalty 89

method [3, 7, 9, 13] to problem (12). We use a penalty in the form 90

Jθ (u) =
1

2θ ∑
{α , β}∈Q

∥∥∥(dαβ −uα n−uβ n

)−∥∥∥2

L2(Sαβ )
+

+
1

2θ ∑
{α ′, β ′}∈QI

∥∥uα ′ −uβ ′
∥∥2
[L2(Γα′β ′ )]3

, (20)

where θ > 0 is a penalty parameter, and y− = min{0,y}. 91

Now, consider the following unconstrained minimization problem in V0: 92

Fθ (u) = A(u,u)/2−H (u)−L(u)+ Jθ (u)→ min
u∈V0

. (21)

The penalty term Jθ is nonnegative and Gateaux differentiable in V0, and its dif- 93

ferential J′θ (u,v) =− 1
θ ∑{α , β}∈Q

∫
Sαβ

(
dαβ −uα n−uβ n

)− (
vα n + vβ n

)
dS+ 94

1
θ ∑{α ′, β ′}∈QI

∫
Γα′β ′

(
uα ′ −uβ ′

) ·(vα ′ −vβ ′
)

dS satisfy the following properties [15]: 95

(∀u ∈V0)(∃R̃ > 0)(∀v ∈V0)
{∣∣J′θ (u,v)∣∣≤ R̃‖v‖V0

}
, (22)

96

(∃D̃ > 0)(∀u,v,w∈V0)
{∣∣J′θ (u+w,v)−J′θ (u,v)

∣∣≤ D̃‖v‖V0
‖w‖V0

}
, (23)

97

(∀u,v ∈V0)
{

J′θ (u+ v,v)− J′θ (u,v)≥ 0
}
. (24)

Using these properties and the results in [3], we have shown that problem (21) 98

has a unique solution ūθ ∈V0 and is equivalent to the following nonlinear variational 99

equation in the space V0: 100

F ′θ (u,v) = A(u,v)−H ′(u,v)+ J′θ (u,v)−L(v) = 0, ∀v ∈V0, u ∈V0. (25)

Using the results of works [7, 13], we have proved that ‖ūθ − ū‖V0
→

θ→0
0. 101
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4 Iterative Methods for Nonlinear Variational Equations 102

In arbitrary reflexive Banach space V0 consider an abstract nonlinear variational 103

equation 104

Φ (u,v) = L(v), ∀v ∈V0, u ∈V0 (26)

where Φ : V0×V0 → R is a functional, which is linear in v, but nonlinear in u, 105

and L is linear continuous form. Suppose that this variational equation has a unique 106

solution ū∗ ∈V0. 107

For the numerical solution of (26) we use the next iterative method [5, 6, 15]: 108

G(uk+1,v) = G(uk,v)− γ
[
Φ (uk,v)−L(v)

]
, ∀v ∈V0, k = 0,1, . . . , (27)

where G is some given bilinear form in V0×V0, γ ∈R is fixed parameter, and uk ∈V0 109

is the k-th approximation to the exact solution of problem (26). 110

We have proved the next theorem [5, 15] about the convergence of this method. 111

Theorem 1. Suppose that the following conditions hold 112

(∀u ∈V0) (∃RΦ > 0) (∀v ∈V0)
{
|Φ (u,v)| ≤ RΦ ‖v‖V0

}
, (28)

113

(∃DΦ >0)(∀u,v,w∈V0)
{
|Φ (u+w,v)−Φ (u,v)| ≤ DΦ‖v‖V0

‖w‖V0

}
, (29)

114

(∃BΦ > 0)(∀u,v ∈V0)
{

Φ (u+ v,v)−Φ (u,v)≥ BΦ ‖v‖2
V0

}
, (30)

bilinear form G is symmetric, continuous with constant MG > 0 and coercive with 115

constant BG > 0, and γ ∈ (0; 2γ∗) ,γ∗ = BΦ BG/D2
Φ . 116

Then
∥∥uk− ū∗

∥∥
V0
→

k→∞
0, where {uk} ⊂V0 is obtained by method (27). Moreover, 117

the convergence rate in norm ‖·‖G =
√

G(·, ·) is linear, and the highest convergence 118

rate in this norm reaches as γ = γ∗. 119

In addition, we have proposed nonstationary iterative method to solve (26), where 120

bilinear form G and parameter γ are different in each iteration: 121

Gk(uk+1,v) = Gk(uk,v)− γk
[
Φ (uk,v)−L(v)

]
, ∀v ∈V0, k = 0,1, . . . . (31)

A convergence theorem for this method is proved in [15]. 122

5 Domain Decomposition Schemes for Contact Problems 123

Now let us apply iterative methods (27) and (31) to the solution of nonlinear penalty 124

variational equation (25) of multibody contact problem. This penalty equation can 125

be written in form (26), where 126

Φ (u,v) = A(u,v)−H ′(u,v)+ J′θ (u,v), u,v ∈V0. (32)
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We consider such variants of methods (27) and (31), which lead to the domain 127

decomposition. 128

Let us take the bilinear form G in iterative method (27) as follows [6, 15]: 129

G(u,v) = A(u,v)+X(u,v), u,v ∈V0, (33)
130

X(u,v) =
1
θ

N

∑
α=1

[
∑

β∈Bα

∫
Sαβ

uα nvα n ψαβ dS+ ∑
β ′∈Iα

∫
Γαβ ′

uα ·vα φαβ ′ dS

]
, 131

where ψαβ (x)= {1, x ∈ S1
αβ } ∨ {0, x ∈ Sαβ\S1

αβ } and φαβ ′(x)= {1, x ∈ Γ 1
αβ ′ } ∨ 132

{0, x ∈ Γαβ ′\Γ 1
αβ ′ } are characteristic functions of arbitrary subsets S1

αβ ⊆ Sαβ , 133

Γ 1
αβ ′ ⊆ Γαβ ′ of possible unilateral and ideal contact areas respectively. 134

Introduce a notation ũk+1 = [uk+1−uk]/γ +uk ∈V0. Then iterative method (27) 135

with bilinear form (33) can be written in such way: 136

A
(

ũk+1,v
)
+X

(
ũk+1,v

)
= L(v)+X

(
uk,v

)
+H ′(uk,v)− J′θ(u

k,v), (34)

137

uk+1 = γ ũk+1 +(1− γ)uk, k = 0,1, . . . . (35)

Bilinear form X is symmetric, continuous with constant MX > 0, and nonnegative 138

[15]. Due to these properties, and due to the properties of bilinear form A, it follows 139

that the conditions of Theorem 1 hold. Therefore, we obtain the next proposition: 140

Theorem 2. The sequence {uk} of the method (34)–(35) converges strongly to the 141

solution of penalty variational equation (25) for γ ∈ (0; 2BΦ BG/D2
Φ), where BG = 142

BA, BΦ = B, DΦ = MA +D+ D̃. The convergence rate in norm ‖·‖G is linear. 143

As the common quantities of the subdomains are known from the previous iter- 144

ation, variational equation (34) splits into N separate equations for each subdomain 145

Ωα , and method (34)–(35) can be written in the following equivalent form: 146

aα(ũk+1
α ,vα)+ ∑

β∈Bα

∫
Sαβ

ψαβ

θ
ũk+1

α n vα n dS+ ∑
β ′∈Iα

∫
Γαβ ′

φαβ ′

θ
ũk+1

α ·vα dS 147

148

= lα(vα)+
1
θ ∑

β ∈Bα

∫
Sαβ

[
ψαβ uk

α n +
(

dαβ −uk
α n−uk

β n

)−]
vα n dS 149

150

+
1
θ ∑

β ′∈Iα

∫
Γαβ ′

[
φαβ ′ u

k
α +

(
uk

β ′ −uk
α

)]
·vα dS+ h′α(u

k
α ,vα) , ∀vα ∈V 0

α , (36)

151

uk+1
α = γ ũk+1

α +(1− γ)uk
α , α = 1,2, . . . ,N, k = 0,1, . . . . (37)

In each iteration k of method (36)–(37), we have to solve N linear variational 152

equations in parallel, which correspond to some linear elasticity problems in sub- 153

domains with additional volume forces in Ωα , and with Robin boundary conditions 154

on contact areas. Therefore, this method refers to parallel Robin–Robin type domain 155

decomposition schemes. 156
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Taking different characteristic functions ψαβ and φα ′β ′ , we can obtain different 157

particular cases of penalty domain decomposition method (36)–(37). 158

Thus, taking ψαβ (x)≡ 0, β ∈ Bα , φαβ ′(x) ≡ 0, β ′ ∈ Iα , α = 1,2, . . . ,N, we get 159

parallel Neumann–Neumann domain decomposition scheme. 160

Other borderline case is when ψαβ (x) ≡ 1, β ∈ Bα , φαβ ′(x) ≡ 1, β ′ ∈ Iα , α = 161

1,2, . . . ,N, i.e. S1
αβ = Sαβ , Γ 1

αβ ′ = Γαβ ′ . 162

Moreover, we can choose functions ψαβ and φαβ ′ differently in each iteration k. 163

Then we obtain nonstationary domain decomposition schemes, which are equivalent 164

to iterative method (31) with bilinear forms 165

Gk(u,v) = A(u,v)+Xk(u,v), u,v ∈V0, k = 0,1, . . . , (38)
166

Xk(u,v) =
1
θ

N

∑
α=1

[
∑

β∈Bα

∫
Sαβ

uα nvα n ψk
αβ dS+ ∑

β ′∈Iα

∫
Γαβ ′

uα ·vα φ k
αβ ′ dS

]
. 167

If we take characteristic functions ψk
αβ and φ k

αβ ′ as follows [6, 14, 15]: 168

ψk
αβ (x) = χk

αβ (x) =

{
0, dαβ (x)−uk

α n(x)−uk
β n(x

′)≥ 0
1, dαβ (x)−uk

α n(x)−uk
β n(x

′)< 0
, x′ = P(x), x ∈ Sαβ , 169

170

φ k
αβ ′(x)≡ 1, x ∈ Γαβ ′ , β ∈ Bα , β ′ ∈ Iα , α = 1,2, . . . ,N, 171

then we shall get the method, which can be conventionally named as nonstationary 172

parallel Dirichlet–Dirichlet domain decomposition scheme. 173

In addition to methods (27), (33) and (31), (38), we have proposed another family 174

of DDMs for the solution of (25), where the second derivative of functional H(u) is 175

used. These domain decomposition methods are obtained from (31), if we choose 176

bilinear forms Gk(u,v) as follows 177

Gk(u,v) = A(u,v)−H ′′(uk,u,v)+Xk(u,v), u,v ∈V0, k = 0,1, . . . . (39)

Numerical analysis of presented penalty Robin–Robin DDMs has been made 178

for plane unilateral two-body and three-body contact problems of linear elasticity 179

(ωα ≡ 0) using finite element approximations [6, 14, 15]. Numerical experiments 180

have confirmed the theoretical results about the convergence of these methods. 181

Among the positive features of proposed domain decomposition schemes are 182

the simplicity of the algorithms and the regularization of original contact problem 183

because of the use of penalty method. These domain decomposition schemes have 184

only one iteration loop, which deals with domain decomposition, nonlinearity of the 185

stress-strain relationship, and nonlinearity of unilateral contact conditions. 186
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