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Summary. The usual setting of an eddy current problem distinguishes between a conduct- 7

ing region and an air region (non-conducting) surrounding the conductor. For the numerical 8

approximation of this heterogeneous problem it is very natural to use iterative substructur- 9

ing methods based on transmission conditions at the interface. We analyze the convergence 10

of the Dirichlet-Neumann iterative method for two different formulations of the eddy current 11

problem: the one that consider as main unknown the electric field and the one based on the 12

magnetic field. 13

1 Introduction 14

To model the electromagnetic phenomena concerning alternating currents at low fre- 15

quencies it is often used the time-harmonic eddy current model (see e.g. [2]). The 16

main equations of this model are Faraday’s law 17

curl E =−iωμH in Ω , (1)

and Ampère’s law 18

curl H = σE+ Je in Ω , (2)

where E, H and Je denote the electric field, the magnetic field and the applied current 19

density respectively. For the sake of simplicity we assume that the computational do- 20

main Ω ⊂ R
3 is a simply connected Lipschitz polyhedron with connected boundary 21

that contains a conducting region ΩC ⊂⊂ Ω and that both ΩC and its complement 22

ΩI := Ω \ΩC are connected Lipschitz polyhedra. Let us denote Γ := ΩC ∩ΩI . The 23

magnetic permeability μ is assumed to be a symmetric uniformly positive definite 24

3×3 matrix with entries in L∞(Ω), whereas the electric conductivity σ is supposed 25

to be a bounded symmetric positive definite matrix in the conducting regions, and to 26

be null in non-conducting regions. The real scalar constant ω �= 0 is a given angu- 27

lar frequency. In ∂Ω suitable boundary conditions must be assigned. Most often the 28

tangential component of either the electric field E×n or the magnetic field H×n are 29

given (here n denotes the unit outward normal vector on ∂Ω ). 30
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Let us introduce some notations that will be used in the following. The space 31

H(curl ;Ω) indicates the set of real or complex vector valued functions v∈ (L2(Ω))3
32

such that curl v ∈ (L2(Ω))3 and H0(curl ;Ω) its subspace constituted by curl-free 33

functions. Given a certain subset Λ ⊂ ∂Ω , we denote by H0,Λ (curl ;Ω) the sub- 34

space of functions in H(curl ;Ω) such that their tangential trace is null on Λ , and in 35

particular we write H0(curl ;Ω) := H0,∂Ω (curl ;Ω). 36

We recall the spaces H−1/2(curlτ ;∂Ω) :=
{
(n×v×n)|∂Ω |v ∈ H(curl ;Ω)

}
, 37

and H−1/2(divτ ;∂Ω) :=
{
(v×n)|∂Ω |v ∈ H(curl ;Ω)

}
, (see [4]). These two spaces 38

are in duality and the following formula of integration by parts holds true 39

∫
Ω
(w · curl v− curl w ·v) = 〈w×n,n×v×n〉∂Ω ∀w, v ∈ H(curl ;Ω) . 40

2 One Field Formulations 41

First we notice that Eqs. (1) and (2) do not completely determine the electric field in 42

ΩI and it is necessary to require the gauge condition 43

divEI = 0 in ΩI . (3)

(Here and in the sequel, given any vector field v defined in Ω , we denote vL its 44

restriction to ΩL, L =C, I.) When imposing electric boundary conditions, E×n = 0 45

on ∂Ω , in order to have a unique solution we need to impose the additional gauge 46

condition
∫

Γ EI ·n = 0. 47

From Faraday law μ−1curl E = −iω H and replacing in Ampère law one has 48

curl (μ−1curl E) = −iω(σE+ Je). So the E-based formulation of the eddy current 49

problem with electric boundary conditions reads 50

curl (μ−1curl E)+ iωσE =−iωJe in Ω
divEI = 0 in ΩI∫

Γ EI ·n = 0
E×n = 0 on ∂Ω .

51

Since σ ≡ 0 in the non-conducting region, the generator current has to satisfy the 52

compatibility conditions divJe,I = 0 in ΩI and, when imposing E× n = 0 on ∂Ω , 53∫
Γ Je,I ·n = 0. 54

Notice that the two gauge conditions divEI = 0 and
∫

Γ EI ·n = 0 are equivalent 55

to
∫

ΩI
EI ·∇φ I = 0 for all φI ∈ H1∗ (ΩI) being H1∗ (ΩI) = {φI ∈ H1(ΩI) : φI|∂Ω ≡ 56

0 and φI|Γ is constant}. Hence the weak form of the E-based formulation is 57

Find E ∈W such that∫
Ω (μ−1curl E · curl w+ iωσE ·w) =−iω

∫
Ω Je ·w

for all w ∈W
58

where W := {w ∈ H0(curl ;Ω) :
∫

ΩI
wI ·∇φ I = 0 ∀φI ∈ H1∗ (ΩI)}. 59
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Remark 1. The gauge conditions can be imposed by means of a Lagrange multiplier. 60

(See [2], Sect. 4.6.) 61

Due to the heterogeneous nature of the problem, it is natural to consider an it- 62

erative procedure by subdomains in order to deal with homogeneous problem. A 63

procedure of this kind is the following: 64

Given λλλ (0) ∈H−1/2(curl τ ;Γ ) for n≥ 0

find E(n+1)
I ∈WI such that

n×E(n+1)
I ×n = λλλ (n) on Γ∫

ΩI
μ−1curl E(n+1)

I · curl wI =−iω
∫

ΩI
Je,I ·wI ∀wI ∈WI ∩H0(curl ;ΩI) ;

find E(n+1)
C ∈H(curl ;ΩC) such that∫

ΩC
(μ−1curl E(n+1)

C · curl wC + iωσE(n+1)
C ·wC) =−iω

∫
ΩC

Je,C ·wC

−〈μ−1curl E(n+1)
I ×nI,n×wC×n〉Γ ∀wC ∈H(curl ;ΩC) ;

set

λλλ (n+1) = (1−θ )λλλ (n) +θ (n×E(n+1)
C ×n)|Γ ,

65

where WI := {wI ∈ H0,∂Ω (curl ;ΩI) :
∫

ΩI
wI ·∇φ I = 0 ∀φI ∈ H1∗ (ΩI)}, nI denotes 66

the unit normal vector on Γ pointing outwards ΩI and θ is a positive acceleration 67

parameter. 68

Another possibility is to eliminate the electric field. Multiplying Faraday law by 69

a function v ∈ H0(curl ;Ω) with curl vI = 0; 70

iω
∫

Ω μH ·v = −∫
Ω curl E ·v =−∫

Ω E · curl v
= −∫

ΩC
σ−1(curl HC−Je,C) · curl vC .

71

Given gI ∈ (L2(ΩI))
3 let V (gI) denotes the space V (gI) := {v ∈ H0(curl ;Ω) : 72

curl vI = gI}. The weak form of H-based formulation of the eddy current problem 73

with magnetic boundary conditions H×n = 0 on ∂Ω reads 74

Find H ∈V (Je,I) such that∫
ΩC

σ−1curl H · curl v+ iω
∫

Ω μH ·v =
∫

ΩC
σ−1Je,C · curl vC

for all v ∈V (0) .
(4)

Since σ ≡ 0 in the non-conducting region, when imposing H×n = 0 on ∂Ω the 75

generator current has to satisfy the compatibility conditions divJe,I = 0 in ΩI and 76

Je,I ·n = 0 on ∂Ω . Hence there exists H∗e,I ∈ H0,∂Ω (curl ;ΩI) such that curl H∗e,I = 77

Je,I . Then we can write HI = H∗e,I +ZI with ZI ∈H0
0,∂Ω (curl ;ΩI). Let H∗e be a func- 78

tion in H(curl ;Ω) such that H∗e|ΩI
=H∗e,I and let us denote Z :=H−H∗e ∈V (0). Mul- 79

tiplying Eq. (4) by −iω−1 and setting F̂(v) :=
∫

Ω μH∗e · v− iω−1 ∫
ΩC

σ−1curl H∗e · 80

curl v, we can consider the equivalent problem 81
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Find Z ∈V (0) such that∫
Ω μZ ·v− iω−1 ∫

ΩC
σ−1curl Z · curl v =−iω−1 ∫

ΩC
σ−1Je,C · curl vC− F̂(v)

for all v ∈V (0) .
82

For the sake of simplicity we will assume that Je,I ·n = 0 on Γ . Then it is possible 83

to take H∗e,I ∈ H0(curl ;ΩI) and H∗e,C equal zero. 84

Remark 2. Notice that H0
0,∂Ω (curl ;ΩI) = ∇H1

0,∂Ω (ΩI)⊕H (ΩI) where H (ΩI) := 85

{vI ∈ H0
0,∂Ω (curl ;ΩI) : divvI = 0 and vI · n = 0 on Γ } that is a space of finite di- 86

mension. In this geometrical setting the dimension of H (ΩI) coincides with the 87

first Betti number of ΩI . (See [2], Sect. 5.1.) 88

We propose an iterative procedure for the solution of the H-based formulation 89

that start from a data in the trace space 90

H−1/2
0 (curl τ ;Γ ) := {(n×wI×n)|Γ : wI ∈ H0

0,∂Ω (curl ;ΩI)} . 91

It reads: 92

Given λλλ (0) ∈ H−1/2
0 (curl τ ;Γ ) for n≥ 0

find H(n+1)
C ∈ H(curl ;ΩC) such that

n×H(n+1)
C ×n = λλλ (n) on Γ∫

ΩC
(μH(n+1)

C ·vC− iω−1σ−1curl H(n+1)
C · curl vC)

=−iω−1 ∫
ΩC

σ−1Je,C · curl vC ∀vC ∈ H0(curl ;ΩC) ;

find Z(n+1)
I ∈ H0

0,∂Ω (curl ;ΩI) such that∫
ΩI

μZ(n+1)
I ·vI = iω−1〈σ−1(curl H(n+1)

C −Je,C)×nC,n×vI×n〉Γ
−∫

ΩI
μH∗e,I ·vI ∀vI,h ∈ H0

0,∂Ω (curl ;ΩI);

set

λλλ (n+1) = (1−θ )λλλ (n) +θ (n×Z(n+1)
I ×n)|Γ ,

93

being nC the unit normal vector on Γ pointing outwards ΩC and θ a positive accel- 94

eration parameter. 95

3 Convergence Analysis 96

Both the H-based formulation and the E-based formulation are of the form: find 97

u ∈V ⊂ H(curl ;Ω) such that 98

a(u,v) = F(v) ∀v ∈V , (5)

where a(·, ·) is a sesquilinear form continuous and coercive in V ×V and F(·) 99

is a continuous linear functional on the Hilbert space V . The proposed iterative 100
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procedures are preconditioned Richardson methods for the Steklov-Poincare equa- 101

tion obtained in the following way (see e.g. [8]): for L = C, I let us define the 102

spaces VL := {v|ΩL
: v ∈ V}, X := {(n× v× n)Γ : v ∈ V} and VL,0 := {vL ∈ 103

VL : (n× vL × n)Γ = 0}; the sesquilinear forms aL(·, ·) : VL ×VL → C and the 104

linear functionals FL : VL → C such that a(v,w) = aC(vC,wC) + aI(vI,wI) and 105

F(v) = FC(vC)+FI(vI) ∀v , w ∈ V . If the sesquilinear forms aL(·, ·) are contin- 106

uous and coercive in VL,0 for both L = C, I we can define the extension operators 107

RL : X →VL in the following way: for any ηηη ∈ X , RLηηη is the unique function in VL 108

such that 109

(n×RLηηη×n)|Γ = ηηη
aL(RLηηη ,vL) = 0 ∀vL ∈VL,0 .

110

Let us consider the Steklov-Poincare operators SL : X → X ′ given by 111

〈SLηηη ,ννν〉Γ = aL(RLηηη ,RLννν) ∀ηηη , ννν ∈ X . 112

Moreover we can define the functions ûL ∈VL,0 such that 113

aL(ûL,vL) = FL(vL) ∀vL ∈VL,0 114

and χχχL ∈ X ′ given by 〈χχχL,ηηη〉Γ = FL(RLηηη)−aL(ûL,RLηηη) ∀ηηη ∈ X . Let us denote 115

χχχ = χχχ I + χχχC. The Steklov-Poincare equation reads: find λλλ ∈ X such that 116

(SI + SC)λλλ = χχχ . (6)

If λλλ is solution of (6) then u =

{
RCλλλ + ûC in ΩC

RIλλλ + ûI in ΩI
is solution of (5). 117

If for one of the two subdomains the sesquilinear form aL(·, ·) is also continuous 118

and coercive in VL then for each ξξξ ∈ X ′ there exist a unique FLξξξ ∈ VL such that 119

aL(FLξξξ ,wL) = 〈ξξξ ,n×wL×n〉Γ ∀wL ∈ VL. It is easy to see that 〈SL(n×FLξξξ × 120

n),ηηη〉Γ = 〈ξξξ ,ηηη〉Γ for all ηηη ∈ X hence S−1
L (ξξξ ) = n×FLξξξ ×n. It is well known that 121

the Dirichlet-Neumann iterative method is equivalent to the preconditioned Richard- 122

son method for the Steklov-Poincare equation 123

λλλ (n+1) = λλλ (n) +θS−1
L

[
χχχ− (SI + SC)λλλ (n)

]
. 124

In the H-based formulation the preconditioner is SI while in the E-based formulation 125

the preconditioner is SC. 126

We are interested in the finite element approximation of these problems using the 127

Nédélec curl-conforming edge elements of degree k, Nk
L,h ⊂H(curl ;ΩL) (see [7]) for 128

L=C, I. Let us denote ¶k, k≥ 0, the space of polynomials of degree less than or equal 129

k in the three variables x1, x2, x3, and by ¶̃k the space of homogeneous polynomials of 130

degree k. For k ≥ 1 we define the polynomial spaces Mk := {q ∈ (¶̃k)
3 |q(x) ·x = 0} 131

and Rk := (¶k−1)
3⊕Mk. Let us consider a tetrahedral triangulation of Ω , Th, such 132

that its restriction to ΩL, TL,h, induces a triangulation of ΩL. Then 133

NL,h := {wh ∈ H(curl ;ΩL) |wh|K ∈ Rk ∀K ∈ TL,h} . 134
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We want to show that in the discrete setting the iterative procedure converges and 135

that the convergence rate is independent of h. 136

The discrete H-based formulation is stated in the space 137

Vh(0) := {vh ∈ Nk
h : vI,h ∈ H0

0,∂Ω (curl ;ΩI)} ⊂V (0) . 138

The space X for the Dirichlet-Neumann procedure is 139

χ0
h = {(n×vh×n)|Γ : vh ∈Vh(0)} ⊂ H−1/2

0 (curl τ ;Γ ) . 140

In ΩC we use the standard Nédélec finite elements Nk
C,h, while in ΩI we have the 141

finite element space 142

VI,h(0) = Nk
I,h∩H0

0,∂Ω (curl ;ΩI) . 143

144

Remark 3. Let Lk
I,h ⊂ H1(ΩI) be the space of standard Lagrange finite elements of 145

degree k and HI,h,0 = Lk
I,h∩H1

0,∂Ω (ΩI). Then 146

VI,h(0) = ∇HI,h,0 +HI,h 147

where HI,h is a space whose dimension coincides with nΓ , the first Betti number of 148

ΩI . More precisely, there exits a system of cutting surfaces Ξl , l = 1, . . . ,nΓ with 149

∂Ξl ⊂ Γ such that every function vI ∈ H0,∂Ω (curl ;ΩI) restricted to ΩI \∪nΓ
l=1Ξl is 150

the gradient of a function belonging to H1(ΩI \∪nΓ
l=1Ξl) (see e.g. [3, 5, 6]). If the 151

triangulation TI,h induces a triangulation on each surface Ξl the space HI,h is the 152

one generated by the (L2(ΩI))
3-extension of the gradient of the piecewise linear 153

function taking value one at the node on one side of Ξl and value zero at all the other 154

nodes including those on the other side of Ξl (see [2], Sect. 5.4). 155

Concerning the E-based formulation, for its finite element approximation we 156

consider the space 157

Wh := {wh ∈ Nk
h :

∫
ΩI

wh ·∇∇∇φ I,h = 0 ∀φI,h ∈ Hk
I,h,∗} 158

where Hk
I,h,∗ = Lk

I,h ∩H1∗ (ΩI). (Notice that Wh is not a subspace of W .) The space X 159

where the Steklov-Poincare operators are defined is the space of discrete traces 160

χh = {(n×wh×n)|Γ : wh ∈ Nk
h} ⊂ H−1/2(curl τ ;Γ ) . 161

Also in this case we use the standard Nédélec finite elements Nk
C,h in ΩC while in ΩI 162

we consider the finite element space 163

WI,h := {wI,h ∈ Nk
I,h :

∫
ΩI

wI,h ·∇φ I,h = 0 ∀φI,h ∈ Hk
I,h,∗} . 164

In order to prove the convergence of the iterative procedure let us proceed as in 165

[1]. If k ∈ C is an eigenvalue of the map TL : X → X , TLηηη := ηηη − θS−1
L (SI + SC)ηηη 166
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with L = I or L = C, then k = 1− θ 〈(SI+SC)ηηη,ηηη〉Γ
〈SLηηη,ηηη〉Γ = (1− θ )− θ 〈SMηηη,ηηη〉Γ

〈SLηηη,ηηη〉Γ for any 167

eigenvector ηηη ∈ X . Here M = I or M =C but M �= L. If 168

Re[〈SIηηη ,ηηη〉Γ ]Re[〈SCηηη ,ηηη〉Γ ]+ Im[〈SIηηη ,ηηη〉Γ ]Im[〈SCηηη ,ηηη〉Γ ]≥ 0 (7)

and 0≤ θ ≤ 1 then 169

|k|2 ≤ (1−θ )2 +θ 2 |〈SMηηη ,ηηη〉Γ |2
|〈SLηηη ,ηηη〉Γ |2 ≤ (1−θ )2 +θ 2 β 2

M

α2
L

170

being βM the continuity constant of SM and αL the coercivity constant of SL. Choos- 171

ing 0 < θ < min
(

1, 2α2
L

α2
L+β 2

M

)
on has |k|< 1 for each k eigenvalue of T , hence in the 172

discrete setting the Dirichlet-Neumann procedures converges and, if αL and βM are 173

independent of the mesh size, h, also the convergence rate is independent of h. 174

In the H-based formulation we have L = I and M =C. The sesquilinear form 175

aC(vC,wC) :=
∫

ΩC

(−iω−1σ−1curl vC · curl wC + μvC ·wC
)

176

is clearly continuous and coercive in H(curl ;ΩC) hence in Nk
C,h. In the insulator 177

aI(vI ,wI) :=
∫

ΩI
μvI ·wI is continuous and coercive in H0(curl ;ΩI) then also in 178

V 0
I,h. The coercivity of SI with a constant αI independent of h follows from the co- 179

ercivity of aI(·, ·) and the continuity of the trace operator while the continuity of SC 180

with a constant βC independent of h follows from the continuity of aC(·, ·) and the ex- 181

istence of a continuous extension operator EC,h : χh→ Nk
C,h with continuity constant 182

independent of h. Such an extension has been constructed in [1]. Moreover (7) clearly 183

holds because it reduces to
(∫

ΩC
μRCηηη ·RCηηη

)(∫
ΩI

μRIηηη ·RIηηη
)
≥ 0. Hence taking 184

θ small enough the iterative Dirichlet-Neumann procedure for the H-based formula- 185

tion converges with a rate independent of the mesh size. 186

On the other hand for the E-based formulation we have L =C and M = I. Again 187

the sesquilinear form 188

aC(vC,wC) :=
∫

ΩC

(
μ−1curl vC · curl wC + iωσvC ·wC

)
189

is clearly continuous and coercive in H(curl ;ΩC) hence in Nk
C,h. The coercivity of SC 190

(the preconditioner in this case) with a constant αC independent of h follows from the 191

uniform coercivity of aC(·, ·) and the continuity of the trace operator. In the insulator 192

we have aI(vI,wI) :=
∫

ΩI
μ−1curl vI ·curl wI that is continuous in H(curl ;ΩI), hence 193

in WI,h. Proceeding as in [2], Sect. 5.5, it can be proved that it is coercive in WI,h ∩ 194

H0(curl ;ΩI). In order to prove the continuity of SI with a constant βI independent 195

of h we need a continuous extension operator EI,h : χh→WI,h∩H0,∂Ω (curl ;ΩI). We 196

know that there exists a continuous extension ÊI,h : χh→ Nk
I,h∩H0,∂Ω (curl ;ΩI) (see 197

again [1]). Given ηηηh ∈ χh let ΦI,h ∈ Hk
I,h,∗ be such that 198
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∫

ΩI

∇∇∇ΦI,h ·∇∇∇ψI,h =
∫

ΩI

ÊI,hηηηh ·∇∇∇ψI,h ∀ψI,h ∈ Hk
I,h,∗ . 199

Then EI,hηηηh := ÊI,hηηηh−∇∇∇ΦI,h is a continuous extension from χh in the space WI,h∩ 200

H0,∂Ω (curl ;ΩI) with continuity constant independent of h. Condition (7) reduce 201

in this case to
(∫

ΩC
μ−1curl RCηηη · curl RCηηη

)(∫
ΩI

μ−1curl RIηηη · curl RIηηη
)
≥ 0 that 202

clearly holds true. 203

4 Conclusion 204

We proposed two iterative substructuring methods for two different formulations of 205

the eddy current problem based on the electric field and magnetic field, respectively, 206

and provided the convergence analysis. Both formulations use a constrained space 207

in the insulator. In the E-based formulation the constrain is imposed introducing a 208

Lagrange multiplier while in the H-based formulation a finite element approximation 209

VI,h(0) of the constrained space H0,∂Ω (curl ;ΩI) is used. The dimension of VI,h(0) is 210

equal to nΓ , the dimension of the HI,h, plus the dimension of HI,h,0, that is a space 211

of scalar functions. So the subproblem in the insulator is smaller for the H-based 212

formulation than for the E-based formulation. However the construction of a base of 213

HI,h requires the determination of a system of cutting surfaces. This procedure can 214

be cumbersome in complex geometry configurations (for instance if the conductor is 215

a trefoil knot) an the E based formulation avoids this difficult. 216
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