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Summary. We consider the mechanical coupling of a geometrically exact Cosserat rod to a 7

linear elastic continuum. The coupling conditions are formulated in the nonlinear rod config- 8

uration space. We describe a Dirichlet–Neumann algorithm for the coupled system, and use it 9

to simulate the static stresses in a human knee joint, where the Cosserat rods are models for 10

the ligaments. 11

1 Cosserat Rods and Linear Elasticity 12

Cosserat rods are models for long slender objects. Let SE(3) = R
3
� SO(3) be the 13

group of orientation-preserving rigid body motions of R
3 (the special Euclidean 14

group). A configuration of a Cosserat rod is a map ϕ : [0,1] → SE(3). For each 15

s∈ [0,1], the value ϕ(s) = (ϕr(s),ϕq(s)) is interpreted as the position ϕr(s)∈R3 and 16

orientation ϕq(s)∈ SO(3) of a rigid rod cross section. Strain measures (vϕ(s),uϕ (s)) 17

at ϕ(s) live in the tangent space Tϕ(s)SE(3), and are defined by 18

vϕ(s) = ϕ ′r(s) and ϕ ′q(s) = u×ϕ (s)ϕq(s),

where u×ϕ is the skew-symmetric matrix corresponding to uϕ . On each cross section 19

s of the rod act a resultant force and torque. These are given by a tuple (n(s),m(s)), 20

which is an element of the cotangent space T ∗ϕ(s)SE(3). In the absence of external 21

forces and torques we have the equations of equilibrium [6] 22

m′+ϕ ′r×n = 0 on [0,1],

n′ = 0 on [0,1].

We assume there to be an energy functional W such that n = ∂W/∂v and 23

m = ∂W/∂u. Existence of solutions for this model has been shown in [12], but 24

note that solutions may be nonunique. 25

We will couple the rod model to a linear elastic continuum. Let Ω be a domain 26

in R
3. Its boundary ∂Ω is supposed to be Lipschitz and to consist of disjoint parts 27
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ΓN and ΓD such that ∂Ω = Γ N ∪Γ D and ΓD has positive two-dimensional measure. 28

We use νννΩ to denote the outward unit normal of Ω . For any displacement function 29

u ∈ H1(Ω) = (H1(Ω))3 we set εεε = 1
2(∇u+∇uT ) the linear strain tensor and the 30

stress σσσ = σσσ(εεε), with a St. Venant–Kirchhoff-type material law 31

σσσ(εεε) =
Eν

(1+ν)(1−2ν)
(trεεε)Id+

E
1+ν

εεε .

The parameters E and ν are the Young’s modulus and Poisson ratio, respectively. 32

The boundary value problem of elasticity is then 33

−divσσσ(u) = f in Ω ,

u = 0 on ΓD,

σσσ(u)νννΩ = t on ΓN ,

with volume forces f : Ω → R
3 and surface force t : ΓN → R

3. 34

2 Coupling Conditions 35

We will now derive conditions for the coupling of a Cosserat rod and a linear elastic 36

three-dimensional object. The two main difficulties are the difference in dimensions 37

between the rod and the continuum, and the nonlinear nature of the rod configuration 38

space. 39

Previous work has mainly focused on coupling linear models of different 40

dimensions. Lagnese et al. [7] have studied the coupling of beams to plates exten- 41

sively. Modeling of 3d–2d junctions between linear elastic objects using a method of 42

asymptotic expansion has been carried out by Ciarlet et al. [4]. Monaghan et al. [8] 43

describe a 3d–1d coupling between linear elastic elements in the discrete setting. A 44

general framework which encompasses these cases is given in [3]. We are not aware 45

of previous work on the coupling of Cosserat rods. 46

Fig. 1. Left: Coupling between a two-dimensional domain and a rod. Right: In the stress-free
configuration the rod may meet the body at an arbitrary spatial angle ϕ̂q(0)

Consider again a linear elastic continuum defined on a reference configuration 47

Ω . This time, the boundary ∂Ω is supposed to consist of three disjoint parts ΓD, ΓN , 48
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and Γ such that ∂Ω = Γ D ∪Γ N ∪Γ . We assume that ΓD and Γ have positive two- 49

dimensional measure. The three-dimensional object represented by Ω will couple 50

with the rod across Γ , which we call the coupling boundary. The boundary of the 51

parameter domain [0,1] of a Cosserat rod consists only of the two points 0 and 1, and 52

the respective domain normals are νννr,0 =−1 and νννr,1 = 1. To be specific, we pick 0 as 53

the coupling boundary. We assume a stress-free rod configuration ϕ̂ : [0,1]→ SE(3) 54

such that ϕ̂r(0) = |Γ |−1 ∫
Γ xds, i.e., the coupling interface of the rod in its stress-free 55

state is placed at the center of gravity of the coupling interface of Ω . The orientation 56

ϕ̂q(0) of the stress-free state does not need to be in any relation with the shape of the 57

coupling boundary Γ (Fig. 1). 58

We define our coupling using a set of conditions for the primal variables. These 59

variables are the configuration ϕ of the rod and the displacement field u of the con- 60

tinuum. It is well known that when coupling two continuum models of the same type, 61

the solution has to be continuous [9]. Since the position ϕr(0) ∈ R
3 of the coupling 62

cross-section can be seen as an averaged position it is natural to couple it to the 63

averaged position of Γ 64

ϕr(0)
!
=

1
|Γ |

∫
Γ
(u(x)+ x)ds. (1)

To obtain a complete set of primal conditions we also need to relate the orien- 65

tations at the interface. This requires some technical preparations. Using the defor- 66

mation gradient F(u) = ∇∇∇(u + Id) we first define the average deformation of the 67

interface boundary Γ as F (u) = |Γ |−1 ∫
Γ ∇∇∇(u(x)+ x)ds. If u stays within the lim- 68

its of linear elasticity the matrix F (u) has a positive determinant. Using the polar 69

decomposition it can then be split into a rotation polar(F (u)) and a stretching. We 70

define the average orientation of Γ induced by a deformation u as the rotational part 71

of F (u). This corresponds to the definition of the continuum rotation used in the 72

theory of Cosserat continua. In particular, if u≡ 0 then polar(F (u)) = Id. 73

The average orientation polar(F (u)) can now be set in relation to ϕq(0), the 74

orientation of the rod cross-section at s = 0. We require the coupling condition to be 75

fulfilled by the stress-free configuration u = 0, ϕ = ϕ̂ . This leads to the condition 76

ϕq(0)
!
= polar(F (u))ϕ̂q(0), (2)

which is an equation in the nonlinear three-dimensional space SO(3). 77

For ease of writing we will introduce the averaging operator Av : H1(Ω)→ SE(3) 78

by setting 79

Av(u) =
( 1
|Γ |

∫
Γ
(u(x)+ x)ds, polar(F (u))ϕ̂q(0)

)
, (3)

where we have used (·, ·) to denote elements of the product space SE(3) = R
3
� 80

SO(3). It is a nonlinear generalization of the restriction operator used in [3]. Then (1) 81

and (2) can be written concisely as 82

ϕ(0) !
= Av(u). (4)

Note that we do not assume that Γ has the same shape or area as the rod cross-section 83

at s = 0. Also, since the coupling conditions relate only finite-dimensional quantities 84
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they remain the same when the subdomain problems are replaced by finite element 85

approximations. 86

The coupling problem is made complete by conditions for the dual variables. 87

For the continuum these variables are the normal stresses at the boundary Γ . For 88

the rod the dual variables are the total force n(0)νννr,0 and the total moment m(0)νννr,0 89

about ϕr(0) transmitted in normal direction across the cross-section at s = 0. We 90

expect these to match the total force and torque exerted by the continuum across the 91

coupling boundary Γ in the direction of −νννΩ 92

∫
Γ

σσσ (u)νννΩ ds =−n(0)νννr,0 (5)
∫

Γ
(x−ϕr(0))× (σσσ(u)νννΩ )ds =−m(0)νννr,0. (6)

Together, these equations relate quantities in the six-dimensional space T ∗ϕ(0)SE(3). 93

Remark 1. A variational formulation suggests that (5) and (6) are not the dual con- 94

ditions of (4) (cf. to [3] for the linear case). Together with (10), however, they are 95

sufficient to construct a working solution algorithm. 96

3 A Dirichlet–Neumann Algorithm 97

In this section we present a Dirichlet–Neumann algorithm for the coupled problem. 98

It can be interpreted as a fixed-point iteration for an equation on the trace space of the 99

rod configuration space at s = 0, i.e. on SE(3). Each iteration consists of three steps: 100

a Dirichlet problem for the rod, a Neumann problem for the body, and a damped 101

update along geodesics on SE(3). Let λ 0 ∈ SE(3) be the initial interface value and 102

k ≥ 0 the iteration number. In more detail, the steps are as follows. 103

1. Dirichlet problem for the Cosserat rod 104

Let λ k,ϕD ∈ SE(3) be the current interface value and a Dirichlet boundary value, 105

respectively. Find a solution ϕk+1 of the Dirichlet rod problem 106

(mk+1)′+(ϕk+1
r )′ ×nk+1 = 0 on [0,1]

(nk+1)′ = 0 on [0,1]

ϕk+1(0) = λ k

ϕk+1(1) = ϕD.

2. Neumann problem for the continuum 107

The new rod iterate ϕk+1 exerts a resultant force nk+1(0)νννr,0 and moment 108

mk+1(0)νννr,0 across its cross-section at s = 0. Construct a Neumann data field 109

τττk+1 : Γ →R
3 such that 110

∫
Γ

τττk+1(x)ds =−nk+1(0)νννr,0 (7)
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and 111

∫
Γ
(x−ϕk+1

r (0))× τττk+1(x)ds =−mk+1(0)νννr,0. (8)

Then solve the three-dimensional linear elasticity problem with Neumann data 112

τττk+1 on Γ 113

−divσσσ(uk+1) = f in Ω

σσσ(uk+1)νννΩ = τττk+1 on Γ (9)

uk+1 = 0 on ΓD

σσσ(uk+1)νννΩ = t on ΓN .

3. Damped geodesic update 114

From the solution uk+1 compute the average interface displacement and orien- 115

tation Av(uk+1) as defined in (3). With a damping parameter θ > 0, the new 116

interface value λ k+1 is then computed as a geodesic combination in SE(3) of the 117

old value λ k and Av(uk+1), 118

λ k+1 = expλ k θ
[

exp−1
λ k Av(uk+1)

]
.

It remains to say how to construct suitable fields of Neumann data τττk+1 that 119

satisfy the conditions (7) and (8). Let us drop the index k for simplicity. In principle, 120

any function τττ : Γ → R
3 of sufficient regularity fulfilling (7) and (8) can be used as 121

Neumann data in (9). It has been shown in [10] that such functions exist. 122

The theory of Cosserat rods assumes that forces and moments are transmitted 123

evenly across cross-sections. We therefore construct τττ to be ‘as constant as possible’. 124

More formally, we introduce the functional 125

T : L2(Γ )×R
3→R, T (h,c) =

∫
Γ
‖h(x)− c‖2 ds,

and construct τττ as the solution of the minimization problem 126

(τττ ,cτττ) = argmin
h∈L2(Γ ),c∈R3

T (h,c) (10)

under the constraints that 127

∫
Γ

τττ ds =−n(0)νννr,0 and
∫

Γ
(x−ϕr(0))× τττ ds =−m(0)νννr,0. (11)

Problem (10) and (11) is a convex minimization problem with linear equality 128

constraints. In [10, Lemma 5.3.4] it was shown that there exists a unique solution. In 129

a finite element setting the problem size is given by the number of grid vertices on 130

Γ times 3. A minimization problem of this type can be solved, e.g., with an interior- 131

point method. 132
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Fig. 2. Left: Problem setting. Tibia and fibula are rotated 15◦ in valgus direction to put addi-
tional stress on the MCL. Center: Deformed grids after two adaptive refinement steps. Right:
Two sagittal cuts through the von Mises stress field
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4 Numerical Results 133

We close with a simulation result for a knee model which combines femur, tibia, and 134

fibula bones modeled as three-dimensional linear elastic objects, and the cruciate and 135

collateral ligaments, modeled as Cosserat rods. The model additionally includes the 136

contact between femur and tibia. To obtain a test case where the contact stresses do 137

not entirely predominate the stresses created in the bone by pulling ligaments, we 138

applied a valgus rotation of 15◦ to tibia and fibula. This leads to a high strain in 139

the medial collateral ligament (MCL) and can be interpreted as an imminent MCL 140

rupture (Fig. 2). 141

The geometry was obtained from the Visible Human data set. We modeled bone 142

with an isotropic, homogeneous, linear elastic material with E = 17 GPa and ν = 0.3. 143

The distal horizontal sections of tibia and fibula were clamped, and a prescribed 144

downward displacement of 2 mm was applied to the upper section of the femur. We 145

used first-order finite elements for the discretization of the linear elasticity problem. 146

DUNE [2] was used for the implementation. 147

The four ligaments were each modeled by a single Cosserat rod with a circular 148

cross-section of radius 5 mm. The rod equations were discretized using geodesic 149

finite elements [11]. We chose a linear material law (see, e.g., [6]) with parameters 150

E = 330 MPa and ν = 0.3. On the bones, the coupling boundaries Γ for the different 151

ligaments were marked by hand using a graphical editor. We modeled all ligaments 152

to be straight in their stress-free configurations and to have 8 % in situ strain. 153

We solved the combined problem using the Dirichlet–Neumann algorithm 154

described in Sect. 3. At each iteration, a pure Dirichlet problem had to be solved 155

for each of the rods and a contact problem with mixed Dirichlet–Neumann bound- 156

ary conditions had to be solved for the bones. The contact problem was solved using 157

the Truncated Nonsmooth Newton Multigrid (TNNMG) algorithm [5]. The TNNMG 158

method solves linear contact problems with the efficiency of linear multigrid. For the 159

ligaments we used a Riemannian trust-region solver [1, 11], and we used IPOpt [13] 160

to solve the minimization problems (10) and (11). Figure 2 shows the deformed con- 161
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Fig. 3. Left: Stress plot on the tibial plateau. Right: Convergence rates of the Dirichlet–
Neumann method as a function of the damping parameter for up to four grid levels
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figuration on a grid obtained by two steps of adaptive refinement and cuts through 162

the von Mises stress field. In Fig. 3, left, a caudal view onto the tibial plateau can be 163

seen, which is colored according to the von Mises stress. The peaks due to contact 164

and the pull of the cruciate ligaments can be clearly observed. 165

We measured the Dirichlet–Neumann convergence rates with bone grids obtained 166

by up to three steps of adaptive refinement using the hierarchical error estimator pre- 167

sented in [10]. Rod grids in turn were refined uniformly. On each new set of grids 168

we started the computation from the reference configuration. That way identical ini- 169

tial iterates for all grid refinement levels were obtained. Details on the measuring 170

setup can be found in [10]. Figure 3, right, shows the Dirichlet–Neumann conver- 171

gence rates plotted as a function of the damping parameter θ for up to four levels 172

of refinement. For each further level of refinement, the optimal convergence rate 173

is slightly worse than for the previous, and obtained for a slightly lower damping 174

parameter. This behavior seems typical for Dirichlet–Neumann methods. Neverthe- 175

less the optimal convergence rates stay around 0.4. This makes the algorithm well 176

usable in practice. 177

Bibliography 178

[1] P.-A. Absil, C. G. Baker, and K. A. Gallivan. Trust-region methods on 179

Riemannian manifolds. Found. Comput. Math., 7(3):303–330, 2007. 180

[2] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, 181

M. Ohlberger, and O. Sander. A generic interface for parallel and adaptive 182

scientific computing. Part II: Implementation and tests in DUNE. Computing, 183

82(2–3):121–138, 2008. 184

[3] P. J. Blanco, M. Discacciati, and A. Quarteroni. Modeling dimensionally- 185

heterogenenous problems: analysis, approximation and applications. Technical 186

Report 14, MATHICSE, 2010. 187

[4] P. G. Ciarlet, H. LeDret, and R. Nzengwa. Junctions between three-dimensional 188

and two-dimensional linearly elastic structures. J. Math. Pures Appl., 68:261– 189

295, 1989. 190



Page 474

UN
CO

RR
EC

TE
D

PR
O
O
F

Oliver Sander

[5] C. Gräser, U. Sack, and O. Sander. Truncated nonsmooth Newton multigrid 191

methods for convex minimization problems. In Proc. of DD18, LNCSE, pages 192

129–136. Springer, 2009. 193

[6] S. Kehrbaum. Hamiltonian Formulations of the Equilibrium Conditions Gov- 194

erning Elastic Rods: Qualitative Analysis and Effective Properties. PhD thesis, 195

University of Maryland, 1997. 196

[7] J. Lagnese, G. Leugering, and E. Schmidt. Modeling, Analysis and Control of 197

Dynamic Elastic Multi-Link Structures. Birkhäuser, 1994. 198

[8] D. J. Monaghan, I. W. Doherty, D. M. Court, and C. G. Armstrong. Coupling 199

1D beams to 3D bodies. In Proc. 7th Int. Meshing Roundtable. Sandia National 200

Laboratories, 1998. 201

[9] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Dif- 202

ferential Equations. Oxford Science Publications, 1999. 203

[10] O. Sander. Multidimensional Coupling in a Human Knee Model. PhD thesis, 204

Freie Universität Berlin, 2008. 205

[11] O. Sander. Geodesic finite elements for Cosserat rods. Int. J. Num. Meth. Eng., 206

82(13):1645–1670, 2010. 207

[12] T. I. Seidman and P. Wolfe. Equilibrium states of an elastic conducting rod in 208

a magnetic field. Arch. Rational Mech. Anal., 102:307–329, 1988. 209

[13] A. Wächter and L. T. Biegler. On the implementation of a primal–dual interior 210

point filter line search algorithm for large-scale nonlinear programming. Math. 211

Progr., 106(1):25–57, 2006. 212




