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Summary. Implicit time stepping methods are useful for the simulation of large scale PDE 9

systems because they avoid the time step limitations imposed by explicit stability conditions. 10

To alleviate the challenges posed by computational and memory constraints, many applica- 11

tions solve the resulting linear systems by iterative methods where the Jacobian-vector prod- 12

ucts are approximated by finite differences. This paper explains the relation between a linearly 13

implicit Euler method, solved using a Jacobian-free Krylov method, and explicit Runge-Kutta 14

methods. The case with preconditioning is equivalent to a Rosenbrock-W method where the 15

approximate Jacobian, inverted at each stage, corresponds directly to the preconditioner. The 16

accuracy of the resulting Runge-Kutta methods can be controlled by constraining the Krylov 17

solution. Numerical experiments confirm the theoretical findings. 18

1 Introduction 19

Large systems of time dependent partial differential equations (PDEs), arising in 20

multi-physics simulations, are often discretized using the method of lines approach. 21

The independent time and space numerical schemes allow the coupling of multiple 22

physics modules, and provide maximum flexibility in choosing appropriate algo- 23

rithms. After the semi-discretization in space the system of PDEs is reduced to a 24

system of ordinary differential equations (ODEs) 25

y′ = f (y) , t0 ≤ t ≤ t f , y(t0) = y0 . (1)

Here y(t) ∈ R
d is the solution vector and y0 the initial condition. We denote the 26

Jacobian of the ODE function by J(y) = fy(y) ∈ R
d×d , and the identity matrix by 27

I ∈R
d×d . 28

Stability requirements (e.g., the CFL condition for discretized hyperbolic PDEs) 29

limit the time steps allowable by explicit time discretizations of (1). When the fastest 30

time scales in the system (1) are short, e.g., in the presence of fast waves, the stability 31

condition imposes time steps much smaller then those required to achieve the target 32
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accuracy. The step size limitation by linear stability conditions is referred to as stiff- 33

ness. In order to overcome this computational inefficiency, it is desirable to use im- 34

plicit, unconditionally stable discretizations which allow arbitrarily large time steps 35

[2]. Implicit methods have a high cost per step due to the need to solve a (non)linear 36

system of equations. 37

To reduce the computational and memory costs of direct linear system solvers, 38

and to aid parallelization, iterative Krylov space methods are employed. Further- 39

more, matrix-free implementations approximate Jacobian vector products by finite 40

differences [4]. This approach avoids additional coding for the Jacobian, preserves 41

the parallel scalability of the explicit model, and has become popular in many appli- 42

cations, e.g., [1, 5, 6]. The hope is that the properties of the implicit time discretiza- 43

tion remain unaltered, provided that the iterative solutions are carried out to sufficient 44

accuracy. We show here that the matrix-free approach does alter the properties of the 45

underlying implicit time stepping method. 46

This study treats a linearly implicit method, together with the Krylov subspace 47

iterations for solving the linear system, as a single numerical scheme. The analysis 48

reveals that matrix-free implementations of linearly implicit methods are equivalent 49

to explicit Runge Kutta methods. Consequently, the unconditional stability property 50

of the base method is lost. When preconditioning is used, the matrix-free implicit 51

methods are equivalent to Rosenbrock-W (ROS-W) methods where the approximate 52

Jacobians correspond directly to the preconditioners. 53

2 The Matrix-Free Linearly Implicit Euler Method 54

Consider the linearly implicit Euler (LIE) method applied to (1) 55

(
I−Δ t J(yn)

) ·w = f (yn) , yn+1 = yn +Δ t ·w . (2)

When the linear system is solved exactly (modulo roundoff errors) by LU factoriza- 56

tion the method (2) is unconditionally stable, and thus suitable for the solution of 57

stiff systems. For many PDEs semi-discretized in the method of lines framework, 58

however, the dimension of the linear system (2) is very large, and the computational 59

and memory costs associated with a direct solution are prohibitive. Moreover, the 60

construction of the explicit Jacobian matrix J is difficult when the space discretiza- 61

tion is based on a domain decomposition approach. To alleviate these problems, a 62

popular approach is to solve (2) by matrix-free iterative methods. We seek to analyze 63

the impact that this approximate solutions have on the stability and accuracy of the 64

implicit time stepping scheme. Our approach is to treat the original discretization 65

(2) together with the iterations as a single numerical method applied to solve the 66

ODE (1). 67

To be specific, we solve the linear system in (2) by a Krylov space method. The 68

initial guess is yn+1 = yn, i.e., w = 0. After m iterations the following m-dimensional 69

Krylov space is built: 70

Km = span
{

f (yn) , . . . ,
(
I−Δ t J(yn)

)m−1
f (yn)

}
.
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In the matrix-free approach, the basis is constructed recursively and the Jacobian- 71

vector products are approximated by finite differences 72

�i = �i−1−Δ t ε−1 f (yn + ε �i−1)+Δ t ε−1 �1 , i = 2, . . . ,m . (3)

We assume that the same scaling factor ε is used to compute the finite differences in 73

all iterations. (The analysis can be easily extended to the case where a different ε is 74

used in each iteration.) Denote 75

k1 = f (yn) ; ki = f (yn + ε�i−1) , i = 2, · · · ,m . (4)

The recurrence (3) can be expressed in terms of ki as: 76

ki = f

(
yn +Δ t

(
Δ t −1 ε +(i−2)

)
k1−Δ t

i−1

∑
j=2

k j

)
, i = 2, . . . ,m. (5)

The solution w = ∑m
i=1 αi �i ∈Km can be expressed in terms of ki’s: 77

w =

(
m

∑
i=1

αi +Δ t ε−1
m

∑
i=2

(i−1)αi

)
k1−Δ t ε−1

m

∑
i=2

(
m

∑
j=i

α j

)
ki . (6)

Equations (5) and (6), together with the relation yn+1 = yn+Δ t w, are compared with 78

the m-stage explicit Runge Kutta (ERK) method [3] 79

ki = f

(
yn +

i−1

∑
j=1

ai j k j

)
, i = 1, . . . ,m ; yn+1 = yn +Δ t

m

∑
i=1

bi ki .

The comparison reveals the following. 80

Theorem 1. The matrix-free LIE (2) method is equivalent to an explicit Runge Kutta 81

method. The number m of Krylov iterations defines the number of Runge Kutta stages. 82

Equations (5) and (6) define the coefficients of the ERK method: 83

ai,1 = Δ t −1 ε +(i−2) ; ai, j =−1 , for i = 2, · · · ,m , j = 2, · · · , i−1;

b1 =
m

∑
j=1

α j +Δ t ε−1
m

∑
j=2

( j−1)α j ; bi =−Δ t ε−1
m

∑
j=i

α j , i = 2, . . . ,m .

2.1 Stability Considerations 84

The solution of the linear system (under the initial guess w = 0) is part of the Krylov 85

space Km and can be represented by a matrix polynomial 86

w = pm−1
(
I−Δ t J(yn)

) · f (yn) . 87

The matrix-free LIE method applied to the Dahlquist test problem y′ = λ y, y(0) = 1, 88

gives the following solution: 89

yn+1 = yn +Δ t w = (1+ z pm−1 (1− z)) yn = R(z)yn , 90

with z = Δ t λ . The stability function of the equivalent ERK method is the degree m 91

polynomial R(z) = 1+ z pm−1 (1− z). 92
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Theorem 2. The stability region of the LIE method, with a Krylov matrix-free linear 93

solver, is necessarily finite. The unconditional stability of the original LIE method is 94

lost. 95

Similar considerations hold for Krylov space methods that use an orthogonal basis 96

of the Krylov space, built by Arnoldi iterations [7]. 97

2.2 Accuracy Considerations 98

The method accuracy is difficult to assess, as the coefficients depend on the time 99

step. The relation between the finite difference scaling factor ε and the time step Δ t 100

is important in determining accuracy. 101

Assume that the finite difference scaling factor is a constant fraction of the time 102

step, ε/Δ t = const. This is a reasonable assumption: in order to increase accuracy 103

one decreases both Δ t , to reduce the truncation error, and ε , to reduce the finite 104

difference error. (Of course, for very small ε the finite difference error becomes again 105

large due to roundoff.) Also assume that the coefficients α1, . . . ,αm do not depend 106

on ε or Δ t . 107

In this case the accuracy can be assessed using the classical approach. The order 108

conditions depend on the Krylov space coefficients α as follows: 109

Order 1:
m

∑
i=1

bi =
m

∑
j=1

α j = 1 , (7a)

Order 2:
m

∑
i=1

bi ci =−
m

∑
i=2

(i−1)αi =
1
2
. (7b)

Neither condition (7a) nor (7b) are automatically satisfied by the Krylov iterative 110

methods. In particular, 111

Lemma 1. The first order accuracy of the matrix-free LIE is not automatic when 112

ε/Δ t = const. Additional constraints need to be imposed on the Krylov solution 113

coefficients. 114

Consider now the case where ε is constant (does not depend on Δ t ). Assume 115

that the coefficients α1, . . . ,αm do not depend on ε or Δ t . A necessary condition for 116

the method to be accurate of order p is that its stability function approximates the 117

exponential, R(z) = ez +O
(
zp+1

)
. The stability function does not depend on either 118

ε or Δ t . The conditions (7a) and (7b) on the Krylov solution coefficients α1, . . . ,αm, 119

which are sufficient when ε = const ·Δ t , seem to be necessary in the case ε = const. 120

In the general case the Krylov solution coefficients α1, . . . ,αm do depend on Δ t . 121

For Δ t → 0 we have that w→ f (yn) and therefore α1→ 1, α2,α3, . . .→ 0. Asymp- 122

totically the condition (7a) holds. Moreover, the number of iterations m also depends 123

on Δ t through the convergence speed. Consequently, it is difficult to extend the clas- 124

sical accuracy analysis to matrix-free linearly implicit methods. It seems reasonable, 125

however, to modify the Krylov method and impose at least condition (7a) on the 126

Krylov coefficients. 127
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3 Preconditioned Iterations 128

Consider the case where a preconditioner matrix M is used to speed up the iterations. 129

The linear system (2) becomes 130

M−1 (
I−Δ t J(yn)

) · k = M−1 f (yn) . 131

The Krylov space constructed in this case is 132

Km = span
{

f (yn) . . . ,
(
M−1 (I−Δ t J(yn))

)m−1
M−1 f (yn)

}
.

In the matrix-free approach the following basis is constructed recursively 133

�1 = M−1 f (yn) ,

�i = M−1 �i−1−Δ t ε−1 M−1 f (yn + ε �i−1)+Δ t ε−1 �1 , i = 2, . . . ,m .

Denote k1 = Δ t �1 and ki = Δ t �1− ε �i for i = 2, · · · ,m. We have 134

M k1 = Δ t f (yn) (8)

M ki = Δ t f (yn + k1− ki−1)+ ki−1− k1 , i = 2, . . . ,m .

Consider, for comparison, a Rosenbrock-W (ROW) method in the implementation- 135

friendly formulation [2, Sect. IV.7] 136

[
I−Δ t γ Ĵn

]
ki = Δ t γ f

(
yn +

i−1

∑
j=1

ai j k j

)
+ γ

i−1

∑
j=1

ci j k j ,

yn+1 = yn +
s

∑
i=1

mi ki . (9)

Here Ĵn ≈ J (yn) is an approximation of the exact Jacobian at the current step. We 137

identify the method coefficients γ = 1 and 138

ci,1 = −1; ci,i−1 = 1; ai,1 = 1; ai,i−1 =−1 , i = 2, · · · ,m .

From the solution w = ∑m
i=1 αi �i = ∑m

i=1 bi ki ∈Km we identify the weights 139

b1 = α1 Δ t −1 + ε−1
m

∑
j=2

α j ; bi =−ε−1 αi , i = 2, . . . ,m .

The preconditioner defines the Jacobian approximation in the ROW method, 140

M = I−Δ t γ Ĵn ⇒ Ĵn = Δ t −1 (I−M) .

Theorem 3. The preconditioned matrix-free LIE is equivalent to a linearly-implicit 141

ROW method. The choice of the preconditioner, besides accelerating convergence, 142

improves the stability of the matrix-free LIE method. The preconditioner defines the 143

Jacobian approximation in the ROW method. 144

Note that the general approach can be applied to ROW methods [2, Sect. IV.7] 145

by solving the linear system of each stage with an iterative matrix free algorithm. 146

The resulting scheme is an explicit Runge Kutta method (or a ROW method) with 147

∑s
i=1 mi stages. 148
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4 Numerical Results 149

Consider the one dimensional scalar advection-diffusion equation 150

ut +(au)x = Duxx, u(x, t = 0) = u0(x) . (10)

A spectral discontinuous Galerkin spatial discretization is used with 20 elements and 151

polynomials of order 8. The diffusive term discretization is stabilized using the inter- 152

nal penalty method [8]. The LIE time stepping is used with the matrix-free GMRES 153

solver [7]. 154
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In Fig. 1a, b, the stability regions generated by the GMRES iterations are plotted 155

for a varying number of Krylov vectors. The regions grow quickly and encompass 156

the eigenvalues of the discrete advection-diffusion operator. Subsequent iterations 157

improve solution accuracy but do not improve linear stability. Additional experi- 158

ments (not reported here due to space constraints) reveal that the stability region of 159

the resulting ERK method adapts to the eigenvalues of different discrete operators. 160

To verify the analysis in (7), we consider three different ways of computing the 161

inverse of the linear Jacobian. The first is by Gauss elimination (LU), the second 162

uses GMRES with the full Jacobian, and the third employs matrix-free GMRES it- 163

erations. In the last approach the GMRES coefficients are restricted by (7b) such 164

as to obtain a second order time discretization method. Figure 1c shows the work- 165

precision diagram for these approaches. The Gaussian elimination and traditional 166

GMRES solutions display first order converge, while the constrained GMRES solu- 167

tion displays second order convergence. 168

5 Conclusions 169

Implicit time integration methods are becoming widely used in the the simulation of 170

time dependent PDEs, as they do not suffer from CFL stability restrictions. While 171
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implicit methods can use much larger time steps than explicit methods, their com- 172

putational cost per step is also higher. The computational time is dominated by the 173

solutions of (non)linear systems of equations that define each stage of a (linearly) 174

implicit method. The implicit code is more effective only when the gains in step size 175

offset the extra cost. 176

To reduce the computational overhead of LU decomposition, to alleviate memory 177

requirements, and to aid parallelization, iterative Krylov space methods are used 178

to solve the large linear systems. A matrix-free implementation approximates the 179

required Jacobian vector products by finite differences. 180

This paper studies the effect of the matrix-free iterative solutions on the proper- 181

ties of the numerical integration method. The analysis reveals that matrix-free lin- 182

early implicit methods can be viewed as explicit Runge Kutta methods. Their stabil- 183

ity region is finite, and the unconditional stability property of the original implicit 184

method is lost. The equivalent Runge Kutta method is nonlinear, in the sense that 185

its weights depend on the time step and on the stage vectors. This makes the ac- 186

curacy analysis difficult. Order conditions of the equivalent explicit Runge Kutta 187

method can be fulfilled by imposing additional conditions on the Krylov solution 188

coefficients. For preconditioned matrix-free iterations the overall time stepping pro- 189

cess is equivalent to a Rosenbrock-W method, where the preconditioner determines 190

the Jacobian approximation. Future work will address the effect of a finite number 191

of Krylov iterations on the stability and accuracy of the overall scheme, in the case 192

where an analytical Jacobian is used. 193
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