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1 Introduction 5

Consider a variationally–posed second–order elliptic boundary value problem 6

a(u,v) ≡
∫

Ω
A (x) ∇u ·∇v =

∫
Ω

f (x)v(x), for all v ∈H1
0 (Ω), (1)

with solution u ∈ H1
0 (Ω) and domain Ω ⊂ R

d , d = 2,3, where the coefficient ten- 7

sor A (x) is highly heterogeneous (possibly in a spatially complicated way). We as- 8

sume that A (x) is symmetric, uniformly positive definite and mildly anisotropic, i.e. 9

λmin(A (x))� λmax(A (x)) uniformly in x. We are particularly interested in the case 10

when the contrast maxx,y∈Ω λmax(A (x))/λmax(A (y)) is large. Many examples of 11

this type arise in subsurface flow modelling or in material science. The space H1
0 (Ω) 12

is the usual Sobolev space of functions with vanishing trace on ∂Ω and f ∈H−1(Ω). 13

For simplicity we assume for the remainder that A (x) =α(x)I, i.e. a scalar diffusion 14

coefficient. 15

Let Th be a simplicial triangulation of Ω and let (1) be discretised in Vh⊂H1
0 (Ω), 16

the space of continuous, piecewise linear FE functions with respect to Th that vanish 17

on ∂Ω . For simplicity let Th be quasi-uniform. The a-orthogonal projection of u to 18

Vh is denoted by uh. In the usual nodal basis {ϕi}n
i=1 for Vh, the problem of finding 19

uh reduces to the n×n linear system 20

Au = b (2)

with stiffness matrix A = (a(ϕi,ϕ j))
n
i, j=1. Since the matrix A depends on α only 21

through element averages, we can assume (w.l.o.g.) that α is piecewise constant with 22

respect to Th. For simplicity we assume that α is piecewise constant with respect to 23

some non-overlapping partitioning of Ω into open, connected Lipschitz polyhedra 24

(polygons) {Ym}M
m=1 and set αm = α|Ym . 25

Especially for d = 3 and for problems where α varies on a small length scale 26

ε � diam(Ω), and thus the mesh size h needs to be very fine, multilevel itera- 27

tive solvers (multigrid, domain decomposition, etc.) are usually essential to solve 28
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this problem efficiently. Their scalability and robustness with respect to mesh re- 29

finement, as well as other discretisation parameters has been studied extensively. 30

Here we will focus on their robustness with respect to coefficient variation. We will 31

show that coefficient robustness is inherently linked to a judicious choice of coarse 32

space VH (related to some coarse mesh TH with resolution H). If ε � H and if we 33

can choose a coarse mesh such that all coefficient jumps are aligned with the mesh, 34

then the coefficient robustness of standard coarse spaces has been analysed in the 35

1990s (cf. [3, 4, 10, 16, 21, 22, 25] and the references therein). For certain methods 36

the robustness may depend on the quasi-monotonicity of the coefficient with respect 37

to the coarse mesh (in the sense of [3]). Substructuring-type (“exotic”) coarse spaces 38

are usually used to achieve uniform coefficient robustness. A certain amount of ro- 39

bustness can be recovered for standard piecewise linear coarse spaces by using the 40

multilevel solver as a preconditioner within CG (e.g. [24]). The key tool in all these 41

analyses is the weighted L2–projection of Bramble and Xu [1]. It requires a piece- 42

wise constant weight with respect to the coarse mesh, an assumption that is often far 43

too stringent in real applications. We want to move away from this and crucially here 44

make no assumptions that the underlying coarse grids resolve the coefficients. 45

A lot of effort in the last 25 years has gone into the development of algebraic 46

methods to construct coarse spaces, such as algebraic multigrid (AMG), rather than 47

analytic/geometric ones. It has been confirmed numerically that AMG methods are 48

in practice robust to coefficient variation when applied to (2) (i.e. the number of 49

iterations is unaffected), and they are therefore extremely popular. However, they are 50

built on several heuristics and so a rigorous analysis of their coefficient-robustness 51

is difficult (see [22] for a review of existing theoretical results). Nevertheless, the 52

key principle of these algebraic coarse spaces, namely energy minimisation [11], 53

also underlies many other coarse spaces. To obtain rigorous coefficient–independent 54

convergence results we will need to work in the following energy and weighted L2- 55

norms on D⊂Ω , 56‖v‖a,D =
∫

D α|∇v|2 and ‖v‖0,α ,D =
∫

D αv2 , 57

respectively. When D = Ω we will usually not specify the domain explicitly. 58

A convenient framework to analyse most multilevel methods is the Schwarz or 59

subspace correction framework [21, 23]. We restrict attention to the two-level over- 60

lapping additive Schwarz method and focus on the robustness of various coarse 61

spaces for this method. We review some recent papers on the topic mainly by the 62

author (jointly with co-workers), as well as by Efendiev et al. All the results ap- 63

ply immediately also to multiplicative, hybrid and non-overlapping versions of the 64

Schwarz method (see [9, 18] for some explicit comments). Many of the results can 65

be extended to a multilevel theory [5, 18]. 66

2 Schwarz Framework and Abstract Coarse Spaces 67

Let us assume that {Ωk}K
k=1 is an overlapping partitioning of Ω and let Ω ◦k be the 68

overlap of subdomain Ωk, i.e. the set of points x∈Ωk that are contained in at least one 69
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other subdomain. We assume that Th is aligned with this partitioning. Furthermore, 70

let {χk}K
k=1⊂Vh be an arbitrary partition of unity (POU) of FE functions subordinate 71

to {Ωk}K
k=1 such that ‖χk‖∞ � 1 and ‖∇χk‖∞ ≤ δ−1

k , for all k = 1, . . . ,K. Note that 72

(due to quasi-uniformity of Th) we always have δk � h, and there is a partition of 73

unity such that δk is proportional to the (minimal) width of Ω ◦k . We assume as usual 74

that each point x ∈Ω is contained in at most N0 subdomains (finite covering). 75

We associate with each Ωk the space Vk = {v ∈Vh : Supp(v)⊂ Ω k} and assume 76

that we have an additional coarse space 77

V0 =VH = span{Φ j ∈Vh : j = 1, . . . ,N} ⊂Vh . 78

Let ω j = interior(Supp(Φ j)) and set Hj = diam(ω j). Then H =max j Hj is the coarse 79

mesh size associated with VH . 80

The two-level additive Schwarz preconditioner is now simply 81

M−1
AS = RT

0 A−1
0 R0 + ∑K

k=1 RT
k A−1

k Rk with Ak = RkART
k . 82

Rk is the matrix representation of a restriction operator from V to Vk: the simple 83

injection operator for k≥ 1, and for k = 0 induced by the coarse space basis {Φ j}N
j=1 84

so that the coarse space stiffness matrix is A0 = (a(Φ j,Φ�))
N
j,�. 85

The following result can be proved in the same way as [18, Theorem 2.5]. Since 86

it is instructive, we give an outline of the proof. 87

Theorem 1. If there exists an operator Π : Vh→V0 such that for all v ∈Vh 88

‖Πv‖2
a ≤ C1 ‖v‖2

a and ∑K
k=1 ‖(v−Πv)∇χk‖2

0,α ≤ C2 ‖v‖2
a , (3)

then κ(M−1
ASA)�C1 +C2. The hidden constant depends on N0. 89

Proof. Let v0 = Πv be such that (3) holds and choose vk = Ih(χk(v− v0)), where Ih 90

is the standard nodal interpolant on Vh. This interpolant is stable for all piecewise 91

quadratic functions in the energy norm and in the weighted L2-norm (independently 92

of α) (cf. [18, Lemma 2.3]), and so we get 93

∑K
k=0 ‖vk‖2

a � ‖v0‖2
a +∑K

k=1 ‖χk(v− v0)‖2
a

� ‖v0‖2
a +∑K

k=1 ‖χk‖2
∞‖v− v0‖2

a,Ωk
+ ‖(v− v0)∇χk‖2

0,α .

Now, the boundedness of the POU functions, the finite cover assumption, as well as 94

(3) lead to the stability estimate ∑K
k=0 ‖vk‖2

a � (C1 +C2)‖v‖2
a. Since v = ∑K

k=0 vk, the 95

result follows from the abstract Schwarz theory (cf. [21]). 96

This result shows the importance of the choice of coarse space. Provided we have 97

a good coarse space approximation in the weighted L2-norm that is moreover stable 98

in the energy norm, independently of variations in α , then the bound on the condition 99

number for two-level additive Schwarz is also robust with respect to these variations. 100

Note that it is crucial to use the weighted L2 and the energy norm here to achieve 101
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coefficient-robustness, and that we only require weak L2–approximation in regions 102

where ∇χk �= 0. 103

Several approaches have been studied in [2, 5–9, 17–19] to provide constants 104

in (3) that are independent of α (or at least of the contrast in α) for various coarse 105

spaces. However, in most cases the constants are not independent of H
ε , where ε 106

is the minimal length scale at which α varies in the regions where ∇χk �= 0. So 107

unfortunately in general, to be also independent of H
ε , restrictions on the coarse mesh 108

size are needed, at least locally. 109

Let us discuss the assumptions (3) a bit further. Let Πv = ∑ j f j(v)Φ j , where 110

f j : Vh→ R is a suitable functional. Then 111

‖Πv‖a =
∥∥∑ j f j(v)Φ j

∥∥
a ≤ ∑ j | f j(v)|‖Φ j‖a . 112

We see that a set of coarse basis functions with bounded energy (independent of α) 113

is beneficial. The first approaches in [8, 9, 17] attacked this target directly and aimed 114

at bounding ‖Φ j‖a. In that case, it suffices to use the standard quasi-interpolant. 115

Alternatively, a weighted quasi-interpolant with f j(v) =
∫

ω j
αv/

∫
ω j

α can be used. 116

For certain (locally quasi-monotone) coefficients α this leads to a constant C1 that 117

is independent of the contrast in α , even if the energy of the basis functions is not 118

bounded (see below). 119

Similar comments can be made about the second assumption in (3). Note that 120

‖(v−Πv)∇χk‖2
0,α ≤

{‖α|∇χk|2‖∞‖v−Πv‖2
0,Ω◦k

, or

‖∇χk‖2
∞‖v−Πv‖2

0,α ,Ω◦k
.

121

We can either try to choose a partition of unity {χk} such that ‖α|∇χk|2‖∞ is bounded 122

independently of α , which is again related to energy minimisation, or we can try to 123

bound ‖v−Πv‖0,α ,Ω◦k directly. As above, it is possible for certain (locally quasi- 124

monotone) coefficients to achieve this and to obtain a constant C2 that does not de- 125

pend on the contrast in α (see below). 126

When the coefficient is not locally quasi-monotone, then it is in general necessary 127

to enrich the coarse space, by either refining the coarse mesh locally, or by choosing 128

more than one basis function per subdomain Ωk, with the key tool to achieve coarse 129

space robustness being again energy minimisation. 130

To highlight some of the key issues we will use a number of representative model 131

problems shown in Fig. 1. For the rest of the paper, we will only focus on cases, such 132

as Fig. 1c, h, where it is impossible or impractical that the subdomains {Ωk} and 133

the supports {ω j} of the coarse basis functions resolve the coefficient jumps. The 134

resolved cases in Fig. 1a, b have already been studied extensively, see e.g. [3, 4, 10, 135

16, 21, 22, 24, 25]. 136

3 Analysis of Coefficient–Robustness 137

We present three possible approaches to try and prove coefficient robustness rigor- 138

ously and thus to design robust coarse spaces. For simplicity, we assume that for 139

each j = 1, . . . ,N, there exists a k = 1, . . . ,K such that ω j ⊂Ωk. 140
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(c)(b)(a)

(h)(g)(f)(e)

(d)

Fig. 1. Typical coefficient distributions (a) resolved; (b) not quasi-monotone; (c) neither quasi-
monotone nor resolved; (d) channelised; (e) flow barriers; (f) low permeability inclusions; (g)
high permeability inclusions; (h) high permeability inclusions and channels

3.1 Standard Quasi-interpolant and Energy Minimisation 141

The first approach makes use of the standard quasi-interpolant 142

Πv = ∑N
j=1 vω j Φ j , where vω j = 1

|ω j |
∫

ω j
v . 143

Let {Φ j}N
j=1 be a set of bounded coarse basis functions that form a partition 144

of unity, except in a boundary layer of width O(H) near ∂Ω . Since each support 145

ω j ⊂ Ωk, for some k, the supports have finite overlap. The constants C1 and C2 can 146

now be bounded independent of the contrast in α , if either 147

γ2(α,{Φ j}) = N
max
j=1

H2−d
j ‖Φ j‖2

a and γ∞(α,{χk}) = K
max
k=1

δ 2
k ‖α1/2∇χk‖2

∞ 148

(the so-called coarse space and partitioning robustness indicators) can be bounded 149

independent of α , for some choice of the partition of unity {χk}K
k=1 subordinate to 150

{Ωk}K
k=1 (cf. [8]), or if γ∞(α,{Φ j}) can be bounded independent of α (cf. [17]). 151

As mentioned above, this leads to the aim to construct coarse basis functions with 152

minimal or bounded energy. It is also at the heart of matrix-dependent prolongation 153

operators in multigrid methods. 154

For certain binary coefficient distributions, e.g. for high-permeability inclusions 155

in a low-permeability medium as depicted in Fig. 1g, it was then possible in [8] to 156

show (rigorously) under the assumption α � 1 that multiscale FEs (w.r.t. some coarse 157

mesh TH ) can provide such a basis {Φ j}, and that the indicators can be bounded 158

independent of the contrast in α . However, they depend on H/ε , where ε is the 159

minimum width of any island/gap. 160

Similarly, it was possible in [17] to show (again assuming α � 1) that aggrega- 161

tion based on a strong connection criterion (originally designed for AMG methods) 162
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leads to a coarse basis {Φ j} for which the robustness indicators can be bounded in- 163

dependent of the contrast in α . Here the bounds depend on H/h, since the overlap 164

between any two supports is only O(h). 165

However, this approach to analyse robustness fails even for the simpler, re- 166

verse situation of a high-permeability medium with low-permeability inclusions (e.g. 167

Fig. 1f), since in this case γ2(α,{Φ j}) and γ∞(α,{Φ j}) depend on the contrast in α 168

for any choice of {Φ j}. Clearly a different quasi-interpolant Π is needed in general. 169

3.2 Weighted Quasi-interpolant and Poincaré’s Inequality 170

The next approach to try to prove the assumptions in Theorem 1 makes use of the 171

weighted quasi-interpolant 172

Πv = ∑N
j=1 vα

ω j
Φ j , where vα

ω j
=
∫

ω j
αv
/∫

ω j
α . 173

We describe this approach for one of the simplest coarse spaces, the piecewise 174

linear one. The following is taken from [18] (see also [6] for earlier results). Let 175

VH be the continuous, piecewise linear FE space associated with a shape-regular 176

simplicial triangulation TH of Ω , such that Th is a refinement of TH . The func- 177

tions {Φ j}N
j=1 are the standard nodal basis for VH . For simplicity, we assume that 178

{Ωk}K
k=1 = {ω j}N

j=1, and choose χk = Φk (suitably modified near ∂Ω ), so that the 179

assumptions on {χk} are satisfied with δk ∼ Hk. 180

The key observation in [18] is now that one further assumption suffices to fully 181

describe the dependency of the constants C1 and C2 in (3) on α: 182

Assumption 1 Let ωT =
⋃
{k:ωk∩T �= /0}ωk and HT = diam(ωT ), for T ∈ TH , and as- 183

sume that there exists a C∗T > 0 such that, for all v ∈Vh, either 184

inf
c∈R

∫
ωT

α(v− c)2 dx � C∗T H2
T

∫
ωT

α|∇v|2 dx, or (4)
185

∂ωT ∩∂Ω �= /0 and
∫

ωT

αv2 dx � C∗T H2
T

∫
ωT

α|∇v|2 dx . (5)

Proposition 1. Let Assumption 1 hold. Then C1 +C2 � C∗ = max
T∈TH

C∗T . 186

Proof. Let v ∈Vh and v0 = ∑N
j=1 vα

ω j
Φ j . By the Cauchy-Schwarz inequality we have 187

|vα
ω j
|2 ≤ ∫ω j

αv2
/∫

ω j
α , and so, using the fact that Φ j ≤ 1, 188

∫
T

αv2
0 ≤ ∑ j:ω j∩T �= /0

∫
ω j

αv2

∫
ω j

α

∫
T

αΦ2
j ≤

∫
ωT

αv2 , 189

which also implies
∫

T α(v− v0)
2 �

∫
ωT

αv2. Now, multiplying the left hand side by 190

|∇χk|2T (which is a constant ∼H−2
T ) and summing over k≥ 1, we get 191

∑K
k=1 ‖(v− v0)∇χk‖2

0,α ,T � H−2
T

∫
ωT

αv2 . (6)
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If {Φ j} forms a partition of unity on all of ωT (i.e. if ∂ωT ∩ ∂Ω = /0), we can 192

replace v in (6) by v̂ = v− c, for any c ∈R, without changing the integral on the left 193

hand side. Otherwise we set v̂ = v. In both cases, by Assumption 1 194∫
ωT

α v̂2 � C∗T H2
T

∫
ωT

α|∇v|2 . (7)

Combining (6) and (7) and summing over all T ∈ TH gives the bound for C2. 195

The bound for C1 can be established in a similar way (cf. [18, Lemma 4.1]). 196

Assumption 1 postulates the existence of a discrete weighted Poincaré/ Fried- 197

richs–type inequality on each ωT . It always holds, but in general the constants C∗T 198

will not be independent of α|ωT and HT/h. As described in detail in [18, Sect. 3] 199

(see also [13–15]), to obtain independence of α , we require a certain local quasi– 200

monotonicity of α on each of the regions ωT . 201

Weighted Poincaré Inequalities. Let us consider a generic coarse element T ∈ TH 202

and define the following subsets of ωT where α is constant: 203

ωm = ωT ∩Ym, m = 1, . . . ,M. 204

By IT ⊂ {1, . . . ,M} we denote the index set of all regions ωm that are non-empty. 205

Let us assume w.l.o.g. that each of these subregions is connected. We generalise 206

now the notion of quasi-monotonicity coined in [3] by considering the following 207

three (two) directed combinatorial graphs Γ (k) = (N,E (k)), 0 ≤ k ≤ d − 1, where 208

N = {ωm : m ∈ IT } and the edges are ordered pairs of vertices. We distinguish 209

between three (two) different types of connections. 210

Definition 1. Suppose that γm,m2 = ωm∩ωm2 is a non-empty manifold of dimension 211

k, for 0 ≤ k ≤ d− 1. The ordered pair (ωm,ωm2) is an edge in E (k), if and only if 212

αm � αm2 . The edges in E (k) are said to be of type-k. 213

In addition, for 1≤ k ≤ d−1, we assume that 214

• meas(γm,m2)∼meas(ωm∪ωm2)k/d , and 215

• γm,m2 is sufficiently regular, i.e. it is a finite union of shape–regular k-dimensional 216

simplices of diameter ∼meas(γm,m2)1/k. 217

Quasi-monotonicity is related to the connectivity in Γ (k). Let m∗ ∈ IT be the 218

index of the region ωm∗ with the largest coefficient: αm∗ = maxm∈IT αm. 219

Definition 2. The coefficient α is type-k quasi-monotone on ωT , if there is a path in 220

Γ (k) from any vertex ωm to ωm∗ . 221

The following lemma summarises the results in [13–15]. The existence of a 222

benign constant C∗T that is independent of α is directly linked to quasi-monotonicity, 223

the way in which C∗T depends on HT/h to the type. 224

Lemma 1. Let ωT ⊂ R
d, d = 2,3. If α is type-k quasi-monotone on ωT , then (4) 225

holds with 226

C∗T =

⎧⎪⎨
⎪⎩

1, if k = d−1,

1+ log
(

HT
h

)
, if k = d−2,

HT
h , if k = d−3.

(8)
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A similar result can also be established in the case where ∂ωK ∩ ∂Ω �= /0, i.e. the 227

case of Friedrichs inequality (5), see e.g. [18, Sect. 3] for details. 228

Quasi–monotonicity is crucial. If the coefficient is not quasi-monotone, e.g. the 229

situation in Fig. 1d, then C∗ cannot be bounded independent of α . See [18, Exam- 230

ple 3.1] for a counter example. If the coarse mesh is not adjusted in certain critical 231

areas of Ω , then VH is in general not robust. The numerical results in [18] show 232

that this is indeed the case and that quasi–monotonicity is necessary and sufficient. 233

However, a few simple adjustments suffice, namely TH has to be sufficiently fine in 234

certain “critical” areas of Ω : 235

1. Choose HT ≤ εm, for all T ∈ TH that intersect a region Ym that is bordered by 236

two regions Ym′ and Ym′′ with αm′ � αm and αm′′ � αm. Here εm denotes the 237

width of Ym at its narrowest point. This ensures that α is quasi-monotone on all 238

regions ωT that intersect Ym. 239

2. Choose HT � h, near any point or edge where α is only type-(d− 2) or type- 240

(d−3) quasi–monotone, i.e. near any cross point. 241

Usually a logarithmic growth C∗ ∼ maxT log(HT/h) is acceptable, and so even re- 242

gions where the coefficient is type-(d− 2) quasi-monotone do not require any par- 243

ticular attention. 244

For an arbitrary piecewise constant coefficient function α there will often only be 245

a relatively small (fixed) number of regions ωT where α is not quasi-monotone (see 246

e.g. Fig. 1b, e). Therefore it is very easy to ensure through some local refinement of 247

TH near these regions that C∗ ∼ 1 (or C∗ ∼ log(H/h)). Note that crucially, this local 248

refinement does not mean that TH has to be aligned with coefficient jumps anywhere 249

in Ω . The coarse grid merely has to be sufficiently fine in regions where α is not 250

quasi-monotone. Ideas on how to adapt TH in such a way are suggested in [18]. 251

“Exotic” coarse spaces. Substructuring–type (“exotic”) coarse spaces (as suggested 252

in [3, 4, 16]) can be analysed in a similar way. Here the coarse basis functions are 253

constructed as a-harmonic extensions of face, edge or vertex “cut” functions associ- 254

ated with a non-overlapping decomposition TH of the domain. This decomposition 255

may be related to the overlapping partitioning {Ωk}, or it may come from a separate 256

coarse grid (not necessarily simplicial). If the coefficient does not vary along any of 257

the edges/faces of TH , then the space can be analysed like the piecewise linear one 258

above, using in addition the energy minimising property of the a-harmonic exten- 259

sion (cf. [14]). If the coefficient does vary along an edge/face, then special weighted 260

Poincaré inequalities for functions with vanishing weighted averages across edges/- 261

faces are required. These have recently been introduced in the context of FETI-DP 262

methods in [12], which also analyses the robustness of the “cut” functions. An ex- 263

plicit analysis in the context of overlapping Schwarz does not yet exist. 264

3.3 Abstract Minimisation with Functional Constraints 265

An alternative to refining the coarse mesh in regions where α is not type–(d− 1) 266

or type–(d− 2) quasi-monotone, is to associate more than one basis function (with 267

possibly identical supports) with each subdomain Ωk. Let 268
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V0 = span{Φk, j = Ih
(
χkΨk, j

)
: j = 1, . . . ,Nk, k = 1, . . . ,K}, 269

where Ψk, j, j = 1, . . . ,Nk, are suitable FE functions in Vh(Ω k) (that do not vanish on 270

∂Ωk) such that the functions {Φk, j} ⊂Vh are linearly independent. Good choices for 271

the functions Ψk, j are the lowest modes of local eigenproblems, or more generally, 272

energy minimising functions that satisfy suitable constraints. The following analysis 273

is from [19] (see [2, 7] for related work). 274

In particular, let us assume that, for every Ωk, we have a collection of linear 275

functionals { fk, j}Nk
j=1 ⊂Vh(Ω k)

′ and let 276

Ψk, j = arg min
v∈Vh(Ω k)

|v|2a, subject to fk,l(Ψk, j) = δ jl j, l = 1, . . . ,Nk . (9)

Now, for any v ∈Vh, choose the following quasi-interpolant 277

Πv = ∑K
k=1 Ih

(
χkΠΩk v

)
, where ΠΩk v = ∑Nk

j=1 fk, j(v|Ωk)Ψk, j , 278

i.e. a linear combination of the basis functions Φk, j with weights fk, j(v|Ωk). Then 279

the bounds on C1 and C2 in Theorem 3 depend only on the stability and on the local 280

L2-approximation properties of ΠΩk on each Ωk. 281

Theorem 1. For all k = 1, . . . ,K and for all v ∈Vh(Ω k), let 282

‖ΠΩk v‖2
a,Ωk
≤ ‖v‖2

a,Ωk
and ‖v−ΠΩkv‖2

0,α ,Ωk
� diam(Ωk)

2‖u‖2
a,Ωk

. (10)

Then C1 = O(1) and C2 � (diam(Ωk)/δk)
2. 283

Proof. See [19, Theorem 5.1]. 284

Note that the minimisation problems in (9) are local to each subdomain. There are 285

suitable choices for the functionals fk, j that guarantee (10) and that lead to practical 286

algorithms to construct the functions Ψk, j, j = 1, . . . ,Nk: 287

• fk, j(v) = (Ψk, j,v)0,α ,Ωk where Ψk, j is the jth eigenfunction corresponding to the 288

variational eigenproblem: Find η ∈Vh(Ω k) and λ ≥ 0, such that 289

a(η ,w) = λ (η ,w)0,α ,Ωk , for all w ∈Vh(Ω k). (11)

This has first been suggested and analysed in [7]. 290

• fk, j(v) = (Ψk, j,v)0,α ,∂Ωk
where Ψk, j is the jth eigenfunction corresponding to a 291

variational eigenproblem similar to (11), but with (η ,w)0,α ,∂Ωk
instead of 292

(η ,w)0,α ,Ωk on the right hand side of (11), i.e. an eigenproblem of Steklov- 293

Poincaré type. This has been analysed in [2]. 294

• fk, j(v) = vα
Dk, j

where {Dk, j}Nk
j=1 is a suitable non-overlapping partitioning of Ωk 295

such that the weighted Poincaré inequality (4) holds on each Dk, j (e.g. Dk, j = 296

Ωk ∩Y j). The construction of {Ψk, j} requires the solution of Nk local saddle 297

point systems and was suggested and analysed in [19]. 298
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It has been shown in [2, 7] how (10) can be proved (directly) in the first two cases, es- 299

sentially based on the observation that the coarse space consists of the lowest modes 300

corresponding to the operator pencil associated to the energy and to the weighted 301

L2-norm. But the assumptions can be proved for a much wider class of functionals 302

using the following abstract approximation result in [19]. This result is related to the 303

classical Bramble-Hilbert lemma. 304

Abstract Approximation Result. Consider an abstract symmetric and continuous 305

bilinear form a(·, ·) : V ×V �→ IR, as well as a collection of linear functionals 306

{ fl}m
l=1 ⊂ V ′, where V ⊂H and H is a Hilbert space with norm ‖ · ‖. We make 307

the following assumptions on a(·, ·), V , H , ‖ · ‖ and { fl}: 308

A1. a(·, ·) is positive semi-definite and defines a semi-norm | · |a on V , i.e. 309

|v|2a = a(v,v)≥ 0, for all v ∈V. 310

In addition, for v ∈V , the expression
√‖v‖2 + |v|2a defines a norm on V . 311

A2. Let cq be a generic constant. For all q ∈ IRm there exists a vq ∈V with 312

fl(vq) = ql , and ‖vq‖� cq‖q‖l2(IRm). 313

A3. There are two constants ca and c f such that 314

‖v‖2 ≤ ca|v|2a + c f ∑m
l=1 | fl(v)|2 , for all v ∈V. (12)

Now, as in the specific case above, define for all v ∈V , 315

πv =
m

∑
l=1

fl(v)ψl , where ψl = argmin
v∈V
|v|2a, subject to fl(ψ j) = δ jl . 316

Then the following inequalities hold; see [19, Theorem 3.3]. 317

Theorem 3. Let Assumptions A1–A3 be satisfied. Then, for all u ∈V: 318

|πu|a ≤ |u|a and ‖u−πu‖≤ √ca|u|a . (13)

(Note that they are independent of the constants cq and c f in A2 and A3.) 319

In the specific case considered above, on an arbitrary subdomain Ωk, Assump- 320

tion A1 is naturally satisfied with H = L2(Ωk) and ‖ · ‖ = ‖ · ‖0,α ,Ωk . Assumption 321

A2 merely ensures that the linear functionals are linearly independent. Thus, the 322

question of coarse space robustness is reduced to verifying Assumption A3. For one 323

functional, i.e. for m= 1, this reduces to the weighted Poincaré inequality in Sect. 3.2 324

and to the restrictions on the coefficients made there. For more than one functional, 325

it opens the possibility to get coefficient robustness even in the case of non-quasi- 326

monotone coefficients, such as those depicted in Fig. 1b, d and even h. See [2, 7, 19] 327

for the complete analysis and some numerical experiments that confirm the robust- 328

ness for the functionals defined on the previous page. See also [20] for a more recent 329

extension to systems of elliptic PDEs (such as linear elasticity). 330
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