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Summary. In this paper we present a stable boundary element tearing and interconnecting 6

domain decomposition method for the parallel solution of the electromagnetic wave equation 7

with piecewise constant wave numbers. In particular we consider stable boundary integral 8

formulations and generalized Robin type transmission conditions to ensure unique solvability 9

of the local subproblems. Numerical results confirm the robustness of the proposed approach. 10

1 Introduction 11

The application of standard finite and boundary element tearing and interconnecting 12

domain decomposition methods [4, 5] may fail in the case of the acoustic or elec- 13

tromagnetic wave equation due to a possible occurence of spurious modes which 14

are related to local Dirichlet or Neumann boundary value problems. For the acous- 15

tic wave equation we have introduced in [9, 10] a boundary element tearing and 16

interconnecting domain decomposition approach which is stable for all local wave 17

numbers. The aim of this paper is to extend these results when considering the elec- 18

tromagnetic wave equation. Although the general concept is rather similar in both 19

cases, the numerical analysis of boundary integral equations and boundary element 20

methods for the Maxwell system requires advanced techniques, in particular appro- 21

priate space splitting approaches. For the definition of Sobolev spaces which are 22

related to the Maxwell equation, see, e.g., [2], for the analysis of Maxwell boundary 23

integral equations, see, for example, [7], and for related boundary element methods, 24

see, e.g., [1]. 25

2 Formulation of the Domain Decomposition Approach 26

As a model problem we consider the Neumann boundary value problem of the elec- 27

tromagnetic wave equation 28

curlcurlU(x)− [k(x)]2U(x) = 0 for x ∈Ω , (1)

γNU(x) := curlU(x)×n = f(x) for x ∈ Γ , (2)
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where Ω ⊂ R
3 is a Lipschitz polyhedron with boundary Γ = ∂Ω . We assume that 29

the boundary value problems (1) and (2) admits a unique solution. Since the wave 30

number k(x) is assumed to be piecewise constant, i.e. k(x) = ki for x ∈Ωi, instead of 31

(1) and (2) we consider local boundary value problems to find Ui = U|Ωi
satisfying 32

curlcurlUi(x)− k2
i Ui(x) = 0 for x ∈Ωi, γNUi(x) = g(x) for x ∈ Γi∩Γ 33

with respect to a non–overlapping domain decomposition 34

Ω =
p⋃

i=1

Ω i, Ωi∩Ω j = /0 for i �= j, Γi = ∂Ωi, 35

together with the transmission or interface boundary conditions 36

γD,iUi(x) = γD, jU j(x) for x ∈ Γi j = Γi∩Γj, (3)

γN,iUi(x)+ γN, jU j(x) = 0 for x ∈ Γi j, (4)

where the Dirichlet trace operator is given by 37

γDU = n× (U|Γ ×n). 38

Since the local Dirichlet or Neumann boundary value problems may exhibit spu- 39

rious modes, instead of the Neumann transmission condition in (4) we consider a 40

generalized Robin interface condition 41

γN,iUi(x)+ γN, jU j(x)+ iηi jRi j[γD,iUi(x)− γD, jU j(x)] = 0 for x ∈ Γi j, i < j. (5)

The operators Ri j are assumed to be strictly positive, i.e. 〈Ri ju,u〉Γi j > 0 for all u ∈ 42

H−1/2
⊥ (curlΓ ,Γi j), and ηi j ∈ R\{0}. We define 43

(Riu|Γi
)(x) := (Ri ju|Γi j

)(x) for x ∈ Γi j 44

and 45

ηi(x) :=

⎧⎪⎨
⎪⎩

ηi j for x ∈ Γi j, i < j,

−ηi j for x ∈ Γi j, i > j,

0 for x ∈ Γi∩Γ ,

46

where we assume that ηi(x) for x ∈ Γi does not change its sign, see also [9]. In 47

this case we can ensure unique solvability [11] of the local Robin boundary value 48

problems 49

curlcurlUi(x)− k2
i Ui(x) = 0 for x ∈Ωi, (6)

γNUi(x)+ iηiRγDUi(x) = g(x) for x ∈ Γi∩Γ . (7)

For the solution of local Dirichlet and Robin boundary value problems we will apply 50

boundary element methods which are based on the use of the Stratton–Chu represen- 51

tation formula for x ∈Ω , see [3], 52
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U(x) =ΨM
k (γDU)(x)+ΨA

k (γNU)(x)+
1
k2 gradΨS

k divΓ (γNU)(x).

Here, 53

ΨA
k (λ )(x) :=

∫

Γ

gk(x,y)λ (y)dsy for x /∈ Γ , gk(x,y) =
1

4π
eik|x−y|

|x− y| ,

is the vector–valued single layer potential with the fundamental solution of the 54

Helmholtz equation, and 55

ΨM
k (λ )(x) := curlΨ A

k (λ ×n)(x) for x /∈ Γ

is the Maxwell double layer potential. In addition, 56

ΨV
k (λ )(x) :=

∫

Γ

gk(x,y)λ (y)dsy for x /∈ Γ

is the scalar single layer potential. By introducing the Maxwell single layer potential 57

ΨS
k (λ )(x) :=ΨA

k (λ )(x)+
1
k2 gradΨS

k divΓ (λ )(x) for x /∈ Γ ,

we can write the Straton–Chu representation formula as 58

U(x) =ΨM
k (γDU(x))+ΨS

k (γNU(x)) for x ∈Ω . (8)

The application of the Maxwell trace operators gives the boundary integral equations 59

[7, 11] 60

γNU = Nk(γDU)+ (
1
2

I+Bk)(γNU),

γDU = (
1
2

I+Ck)(γDU)+Sk(γNU).

(9)

Now we are in a position to derive different approaches to solve local boundary 61

value problems with generalized Robin boundary conditions. Here we consider an 62

approach which is based on the use of the Steklov–Poincaré operator 63

Tk = N+(
1
2

I+Bk)S
−1
k (

1
2

I+Ck) = S−1
k (

1
2

I+Ck) (10)

which requires the invertibility of the single layer operator Sk. Since Sk is not in- 64

vertible for all wave numbers k, instead of (10) we consider a system of boundary 65

integral equations to find u ∈H−1/2
‖ (divΓ ,Γ ) and t ∈H−1/2

⊥ (curlΓ ,Γ ) such that 66

(
Nk + iηR 1

2 I +Bk

− 1
2 I+Ck Sk

)(
u
t

)
=

(
g
0

)
(11)
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is satisfied. The unique solvability of (11) follows from a generalized Garding in- 67

equality 68

Re

(〈(
Nk + iηR 1

2 I +Bk

− 1
2 I+Ck Sk

)(
u
t

)
,

(
Y u
X t

)〉
Γ
+C((u, t),(u, t))

)

≥ c

(
‖u‖2

H−1/2
⊥ (curlΓ ,Γ )

+ ‖t‖2
H−1/2
‖ (divΓ ,Γ )

)

for some appropriate bijective operators X and Y , and from injectivity which is in 69

fact related to the unique solvability of the local Robin boundary value problems (6) 70

and (7), see [11]. Since the proof of the generalized Grarding inequality requires a 71

comprehensive study of the trace spaces H−1/2
⊥ (curlΓ ,Γ ) and H−1/2

‖ (divΓ ,Γ ), and 72

of the corresponding Hodge–type splittings, we refer to [2, 11] for a detailed presen- 73

tation. 74

By summing up all local boundary integral equation systems with respect to the 75

transmission conditions (5) we finally obtain the following variational formulation 76

to find u ∈H−1/2
⊥ (curlΓ ,ΓS) and ti ∈H−1/2

‖ (divΓ ,Γi) satisfying 77

p

∑
i=1

[
〈Niu|Γi

,v|Γi
〉Γi + 〈(

1
2

I+Bi)ti,v|Γi
〉Γi + iηi〈Riu|Γi

,v|Γi
〉Γi

]
= 〈f,v〉Γ (12)

for all v ∈H−1/2
‖ (divΓ ,ΓS) and 78

〈Siti,μ i〉Γi + 〈(−
1
2

I+Ci)u|Γi
,μ i〉Γi = 0 (13)

for all μ i ∈ H−1/2
‖ (divΓ ,Γi), i = 1, . . . , p. The variational formulation (12), (13) ad- 79

mits a unique solution iff the orginal problems (1) and (2) has a unique solution, see 80

[11]. 81

A boundary element discretization of the Sobolev spaces H−1/2
⊥ (curlΓ ,ΓS) and 82

H−1/2
‖ (divΓ ,Γi) by using Raviart–Thomas elements [8, 11], i.e. 83

Eh := Eh(ΓS) = span{φ k}MS
k=1 ⊂H−1/2

⊥ (curlΓ ,ΓS)

and 84

Fi,h = span{ψ i
k}Ni

k=1 ⊂H−1/2
‖ (divΓ ,Γi),

then results in a linear system of algebraic equations, 85

⎛
⎜⎜⎜⎜⎜⎝

S1,h C̃1,hAi

. . .
...

Sp,h C̃p,hAp

A�1 B̃1,h . . . A�p B̃p,h

p

∑
i=1

A�i [Ni,h + iηiRi,h]Ai

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

t1
...

t p
u

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

0
...
0

p
∑

i=1
A�i f

i

⎞
⎟⎟⎟⎟⎟⎠
, (14)
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where the block matrices are given by 86

Si,h[�,k] = 〈Siψ i
k,ψ

i
�〉Γi ,

C̃i,h[�,n] = 〈(−1
2

I+Ci)φ i
n,ψ

i
�〉Γi ,

B̃i,h[m,k] = 〈(1
2

I +Bi)ψ i
k,φ

i
m〉Γi ,

Ni,h[m,n] = 〈Niφ i
n,φ

i
m〉Γi ,

Ri,h[m,n] = 〈Riφ i
n,φ

i
m〉Γi

for k, � = 1, . . . ,Ni, m,n = 1, . . . ,Mi, and i = 1, . . . , p. 87

In what follows we will discuss an efficient and parallel solution of the linear 88

system (14). Although the computation of all block matrices can be done in parallel, 89

the construction of an appropriate preconditioner is more challenging. A possible ap- 90

proach is to design preconditioners as in tearing and interconnecting methods which 91

are well established for a wide range of applications. A first step into this direction 92

is the formulation of stable tearing and interconnecting methods. 93

The idea of the tearing and interconnecting approach is to tear the global degrees 94

of freedom, which are given by u, into local degrees of freedom ui. To ensure global 95

continuity, we need to glue them together by using Langrange multipliers [10, 11], 96

see also Fig. 1. Note, that instead of Neumann transmission condition we use the 97

generalized Robin transmission conditions as given in (5). As in the standard tearing 98

and interconnecting approach this leads to the extended linear system 99

Ω1Ω2

Ω3 Ω4

Ω5

Fig. 1. Tearing and Interconnecting for edge based trial functions
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

N1,h + iη1Ri,h B̃1,h −B�1
C̃1,h S1,h

. . .
...

Np,h + iηpRp,h B̃p,h −B�p
C̃p,h Sp,h

B1 . . . Bp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u1
t1
...

up
t p
λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f
1

0
...

f
p

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(15)

where the sparse and Boolean matrices Bi ensure the continuity of the global solution. 100

Since the local Robin boundary value problems (6) and (7) are uniquely solvable, 101

the local block matrices are invertible, and we can consider the Schur complement 102

system 103

p

∑
i=1

(
0 Bi

)(Ni,h + iηiRi,h B̃i,h

C̃i,h Si,h

)−1(
B�i λ

0

)

=−
p

∑
i=1

(
Bi 0

)(Ni,h + iηiRi,h B̃i,h

C̃i,h Si,h

)−1(
f

i
0

)
.

(16)

Note that (16) corresponds to the adjoint system of standard tearing and intercon- 104

necting approaches [4, 5]. 105

3 Numerical Results 106

As a first example we consider the Neumann boundary value problem 107

curlcurlU− k2U = 0 in Ω ,

γNU = f on Γ
(17)

where the domain Ω is given by (−1.0,1.5)×(0.0,1.0)×(0.0,1.0), and Ω is divided 108

into two subdomains Ωi by the yz–plane, see Fig. 2. 109

Ω1 Ω2

Fig. 2. Computational domain Ω and domain decomposition
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As an analytical solution for both examples we use 110

U(x) =

⎡
⎣1+ ikr− k2r2

r3

⎛
⎝1

0
0

⎞
⎠− 3+ 3ikr− k2r2

r5 (x1− x̂1)

⎛
⎝x1− x̂1

x2− x̂2

x3− x̂3

⎞
⎠
⎤
⎦eikr
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with r = |x− x̂| and x̂ = (−3.0,2.1,1.1)�. The boundary element discretization of 111

the coupled variational formulation (12) and (13) is done with respect to a globally 112

uniform boundary element mesh with Ei edges per subdomain Ωi, and by using first 113

order Raviart–Thomas elements. The number of Lagrange multipliers is denoted by 114

Λ . The linear system (16) is solved by a GMRES method with a relative residuum 115

reduction of ε = 10−7. For our numerical tests we consider two different wave num- 116

bers: The first one is k = 1.0 and the second one is the first Dirichlet and Neumann 117

eigenfrequency of the unit cube Ω1, k =
√

2π ≈ 4.44288. The results are given in Ta- 118

ble 1, where the error is the relative L2(Γ1) error of the lowest order Raviart–Thomas 119

approximation of the local Dirichlet datum u1. 120

t1.1Ei Λ iter error
t1.236 8 5 0.1824189
t1.3144 28 17 0.0895037
t1.4576 104 49 0.0440296
t1.52304 400 142 0.0234164

Ei Λ iter error
36 8 5 0.7042192

144 28 19 0.3055468
576 104 47 0.1472184

2304 400 104 0.0772003

Table 1. Iteration numbers and errors for k = 1 (left) and k =
√

2π (right).

In a second example we consider the Neumann boundary value problem (17) for the 121

unit cube Ω = (0,1)3 which is divided into eight subcubes Ωi. The results for two 122

different wave numbers k = 1.0,8.0 are given in Table 2.

t3.1Ei Λ iter error
t3.236 90 60 0.1133393
t3.3144 324 147 0.0550944
t3.4576 1224 476 0.0266769

Ei Λ iter error
36 90 60 0.9432815

144 324 153 0.3776120
576 1224 397 0.1769975

Table 2. Iteration numbers and errors for k = 1 (left) and k = 8 (right).

123

Both numerical experiments confirm the stability and robustness of the proposed 124

approach, and the theoretical error estimate as given in [11], i.e. we expect a linear 125

order of convergence when using lowest order Raviart–Thomas elements. Note that 126

the linear system (16) is solved by a GMRES method without preconditioner. Hence 127

we observe a rapidly increasing number of required iterations. Therefore, the use 128

of local and global preconditioners is mandatory for the solution of problems of 129

practical interest. Probably, possible preconditioners can be constructed as in the 130

acoustic scattering case see [11]. Another possibility is to consider a dual–primal 131

approach as in [6]. 132

Acknowledgments This work was supported by the Austrian Science Fund (FWF) within the 133

project Data sparse boundary and finite element domain decomposition methods in electro- 134

magnetics under the grant P19255. 135



Page 238

UN
CO

RR
EC

TE
D

PR
O
O
F

Olaf Steinbach and Markus Windisch

Bibliography 136

[1] A. Buffa, R. Hiptmair, T. von Petersdorff, and C. Schwab. Boundary element 137

methods for Maxwell transmission problems in Lipschitz domains. Numer. 138

Math., 95:459–485, 2003. 139

[2] A. Buffa and P. Ciarlet Jr. On traces for functional spaces related to Maxwell’s 140

equations. I. An integration by parts formula in Lipschitz polyhedra. Math. 141

Methods Appl. Sci., 24:9–30, 2001. 142

[3] L. J. Chu and J. A. Stratton. Diffraction theory of electromagnetic waves. Phys. 143

Rev., 56:99–107, 1939. 144

[4] C. Farhat and F.-X. Roux. A method of finite element tearing and interconnect- 145

ing and its parallel solution algorithm. Int. J. Numer. Meth. Engrg., 32:1205– 146

1227, 1991. 147

[5] U. Langer and O. Steinbach. Boundary element tearing and interconnecting 148

methods. Computing, 71:205–228, 2003. 149

[6] Y. Li and J.-M. Jin. A vector dual-primal finite element tearing and intercon- 150

necting method for solving 3-D large-scale electromagnetic problems. IEEE 151

Trans. Antennas Propag., 54:3000–3009, 2006. 152

[7] J.-C. Nédélec. Acoustic and electromagnetic equations, volume 144 of Applied 153

Mathematical Sciences. Springer, New York, 2001. 154

[8] P.-A. Raviart and J. M. Thomas. A mixed finite element method for 2nd order 155

elliptic problems. In Mathematical aspects of finite element methods, volume 156

606 of Lecture Notes in Mathematics, pages 292–315. Springer, Berlin, 1977. 157

[9] O. Steinbach and M. Windisch. Robust boundary element domain decompo- 158

sition solvers in acoustics. In Y. Huang et al., editor, Domain Decomposition 159

Methods in Science and Engineering XIX, volume 78 of Lecture Notes in Com- 160

putational Science and Engineering, pages 277–284. Springer, Berlin, Heidel- 161

berg, 2011. 162

[10] O. Steinbach and M. Windisch. Stable boundary element domain decomposi- 163

tion methods for the Helmholtz equation. Numer. Math., 118:171–195, 2011. 164

[11] M. Windisch. Boundary element tearing and interconnecting methods for 165

acoustic and electromagnetic scattering. PhD thesis, Institute of Computa- 166

tional Mathematics, TU Graz, 2010. 167




