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1 Introduction 7

In conjunction with modern high performance computing systems, domain decom-AQ1 8

position algorithms permit simulation of PDEs with extremely high resolution nu- 9

merical models. Such computational models substantially reduce discretization er- 10

rors. In realistic simulation of certain physical systems, it is however necessary to 11

consider the heterogeneities of the model parameters. Whenever sufficient statistical 12

information is available, such heterogeneities can be modeled by stochastic processes 13

(e.g. [2]). For uncertainty propagation, the traditional Monte Carlo simulation may 14

be impractical for these high resolution models. As an alternative, a domain decom- 15

position algorithm for stochastic PDEs (SPDEs) is proposed [4] using the spectral 16

stochastic finite element method (SSFEM). The SSFEM discretization leads to a lin- 17

ear system with a block sparsity structure, and the size of the resulting system grows 18

rapidly with the spatial mesh resolution and the order of the stochastic dimension 19

[2]. The solution of this large-scale system constitutes a computationally challeng- 20

ing task and therefore efficient solvers are required. Extending the formulation in 21

[4], the iterative substructuring based non-overlapping domain decomposition meth- 22

ods are proposed to solve the large-scale linear system arising in the SSFEM. The 23

methodology is based on domain decomposition in the geometric space and a func- 24

tional decomposition in the stochastic space [4]. Firstly, we describe a primal version 25

of iterative substructuring methods of SPDEs. The method offers a straightforward 26

approach to formulate a two-level scalable preconditioner. In the proposed precondi- 27

tioner, the continuity of the solution field is strictly enforced on the corner nodes of 28

the interface boundary, but weakly satisfied over the remaining interface nodes. This 29

approach naturally leads to a coarse grid connecting the subdomains globally and 30

provides a mechanism to propagate information across the subdomains which makes 31

the algorithm scalable. The proposed preconditioner may be viewed as an extension 32

of BDDC [3] for SPDEs. Secondly, a dual-primal iterative substructuring method is 33

introduced for SPDEs. In this approach, the continuity condition on the corner nodes 34

is strictly satisfied and Lagrange multipliers are used to weakly enforce the continu- 35
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ity on the remaining nodes of the interface boundary. This method may be construed 36

to be an extension of FETI-DP [1] for SPDEs. 37

2 Uncertainty Representation by Stochastic Processes 38

We briefly review the theories of stochastic processes, relevant to subsequent theoret- 39

ical developments, by closely following [2, 4–6]. Assuming the input data (contain- 40

ing sufficient statistical information) permits a representation of the model parame- 41

ters as stochastic processes that span the Hilbert space HG. Using Karhunen-Loeve 42

expansion (KLE), a set of basis functions {ξi(θ )} for the Hilbert space HG is iden- 43

tified. The KLE of a stochastic process α(x,θ ) is based on the spectral expansion of 44

its covariance function Cαα(x,y), and takes the following form [2] 45

α(x,θ ) = ᾱ(x)+
∞

∑
i=1

√
λiξi(θ )φi(x), (1)

where ᾱ(x) is the mean of the stochastic process, {ξi(θ )} is a set of uncorrelated ran- 46

dom variables and {λi,φi(x)} are the eigenpairs of the covariance function, obtained 47

from the following integral equation 48

∫
Ω

Cαα(x,y)φi(y)dy = λiφi(x). (2)

For a smooth stochastic process, only a finite number of KLE basis is sufficient to 49

represent the stochastic process. Given the covariance function of the solution is not 50

known a priori, the KLE cannot be used to represent solution process. Assuming the 51

solution process u(x,θ ) belong to the Hilbert space HL, a generic basis of this space 52

can be identified using the Polynomial Chaos (PC) [2]. Consequently, the solution 53

process can be approximated as 54

u(x,θ ) =
N

∑
j=0

Ψj(θ )u j(x), (3)

where the polynomials Ψj(θ ) are orthogonal in the statistical sense, meaning 55

〈Ψj,Ψk〉 = 〈Ψ 2
j 〉δ jk where 〈·〉 denotes the expectation operator and δ jk is the Kro- 56

necker delta, and u j(x) are the PC coefficients to be determined by Galerkin projection.57

3 Review of Schur Complement Based Domain Decomposition 58

Method of SPDEs 59

A review of the domain decomposition method for SPDEs based on [4–6] is pro- 60

vided in this section. For an elliptic SPDE defined on a domain Ω with a prescribed 61

boundary condition on ∂Ω , the finite element discretization leads to the following 62

linear system 63
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A(θ )u(θ ) = f, (4)

where A(θ ) is the random stiffness matrix, u(θ ) is the stochastic response and f is 64

the applied force. The physical domain Ω is split into ns non-overlapping subdo- 65

mains {Ωs}ns
s=1. For a typical subdomain Ωs the nodal vector us(θ ) is partitioned 66

into interior us
I(θ ) and interface us

Γ (θ ) unknowns. This decomposition leads to the 67

following subdomain equilibrium equation 68

[
As

II(θ ) As
IΓ (θ )

As
Γ I(θ ) As

Γ Γ (θ )

]{
us

I(θ )
us

Γ (θ )

}
=

{
fs
I

fs
Γ

}
. (5)

Enforcing the transmission conditions and expanding the solution vector by the PCE 69

(as in Eq. (3)) and then performing Galerkin projection, we obtain the following 70

block linear systems of equations [4–6]: 71

〈
L

∑
i=0

Ψi(θ )

⎡
⎢⎢⎢⎢⎢⎢⎣

A1
II,i . . . 0 A1

IΓ ,iR1
...

. . .
...

...
0 . . . Ans

II,i Ans
IΓ ,iRns

RT
1 A1

Γ I,i . . . RT
ns

Ans
Γ I,i

ns

∑
s=1

RT
s As

Γ Γ ,iRs

⎤
⎥⎥⎥⎥⎥⎥⎦

N

∑
j=0

Ψj(θ )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1
I, j
...

uns
I, j

uΓ , j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Ψk(θ )〉

72

= 〈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1
I
...

fns
I

ns

∑
s=1

RT
s fs

Γ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Ψk(θ )〉, k = 0, . . . ,N. (6)

where the restriction operator Rs maps the global interface vector uΓ (θ ) to the local 73

interface unknown us
Γ (θ ) as us

Γ (θ ) =RsuΓ (θ ). Compactly, Eq. (6) can be expressed 74

as 75

⎡
⎢⎢⎢⎢⎢⎣

A 1
II . . . 0 A 1

IΓ R1
...

. . .
...

...
0 . . . A ns

II A ns
IΓ Rns

RT
1 A 1

Γ I . . . RT
ns

A ns
Γ I

ns

∑
s=1

RT
s A s

Γ Γ Rs

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U 1
I
...

U ns
I

UΓ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F 1
I

...
F ns

I
ns

∑
s=1

RT
s F s

Γ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (7)

where [A s
αβ ] jk =

L

∑
i=0

〈ΨiΨjΨk〉As
αβ ,i, F s

α ,k = 〈Ψkfs
α〉, U m

I = (um
I,0, . . . ,u

m
I,N)

T and 76

Rs = blockdiag(R0
s , . . . ,R

N
s ). The subscripts α and β represent the index I and Γ . 77

Performing Gaussian elimination in Eq. (7), we obtain the global extended Schur 78

complement system as 79

S UΓ = GΓ , (8)

where S=
ns

∑
s=1

RT
s [A

s
Γ Γ−A s

Γ I(A
s

II)
−1A s

IΓ ]Rs, GΓ=
ns

∑
s=1

RT
s [F

s
Γ −A s

Γ :I(A
s

II)
−1F s

I ]. 80
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4 Primal Iterative Substructuring Method of SPDEs 81

In this section, a two-level domain decomposition method is formulated in the con- 82

text of SPDEs. The subdomain nodal vector, namely the primal variable, is parti- 83

tioned into interior, remaining interface and corner nodes as schematically shown in 84

Fig. 1 [3]. Using PCE to represent the random coefficients of the system parame- 85

ters and performing Galerkin projection, lead to the following coupled deterministic 86

system 87⎡
⎣A s

ii A s
ir A s

ic
A s

ri A s
rr A s

rc
A s

ci A s
cr A s

cc

⎤
⎦
⎧⎨
⎩

U s
i

U s
r

U s
c

⎫⎬
⎭=

⎧⎨
⎩

F s
i

F s
r

F s
c

⎫⎬
⎭ . (9)

Fig. 1. Partitioning domain nodes into: interior (�), remaining (�) and corner (•)
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Enforcing the transmission conditions along the boundary interfaces, the subdo- 88

main equilibrium equation can be written as 89

⎡
⎢⎢⎢⎢⎢⎣

A s
ii A s

irB
s
r A s

icB
s
c

ns

∑
s=1

Bs
r

T A s
ri

ns

∑
s=1

Bs
r

T A s
rrB

s
r

ns

∑
s=1

Bs
r

T A s
rcB

s
c

ns

∑
s=1

Bs
c

T A s
ci

ns

∑
s=1

Bs
c

T A s
crB

s
r

ns

∑
s=1

Bs
c

T A s
ccB

s
c

⎤
⎥⎥⎥⎥⎥⎦

⎧⎨
⎩

U s
i

Ur

Uc

⎫⎬
⎭=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F s
i

ns

∑
s=1

Bs
r

T F s
r

ns

∑
s=1

Bs
c

T F s
c

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
,

(10)
where Bs

r and Bs
c are Boolean rectangular matrices that extract the subdomain re- 90

maining interface and corner degrees of freedom from the corresponding global vec- 91

tors Ur and Uc as U s
r = Bs

rUr and U s
c = Bs

cUc. Eliminating U s
i from Eq. (10), we 92

obtain 93

⎡
⎢⎢⎢⎣

ns

∑
s=1

Bs
r

T S s
rrB

s
r

ns

∑
s=1

Bs
r

T S s
rcB

s
c

ns

∑
s=1

Bs
c

T S s
crB

s
r

ns

∑
s=1

Bs
c

T S s
ccB

s
c

⎤
⎥⎥⎥⎦
{

Ur

Uc

}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ns

∑
s=1

Bs
r

T G s
r

ns

∑
s=1

Bs
c

T G s
c

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (11)

94
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where S s
αβ = A s

αβ −A s
α i[A

s
ii ]
−1A s

iβ and G s
α = F s

α −A s
α i[A

s
ii ]
−1F s

i . Eliminating 95

Uc from Eq. (11) leads to the following symmetric positive definite reduced interface 96

problem 97

(Frr−Frc[Fcc]
−1Fcr)Ur = dr−Frc[Fcc]

−1dc, (12)

where Fαβ =
ns

∑
s=1

Bs
α

T S s
αβ Bs

β and dα =
ns

∑
s=1

Bs
α

T G s
α . 98

4.1 Two-Level Primal Preconditioner 99

The Preconditioned Conjugate Gradient Method (PCGM) can be used to solve the 100

reduced interface problem in Eq. (12). At each iteration of the PCGM, the continuity 101

of the solution field is enforced strictly on the corner nodes, but weakly satisfied 102

on the remaining interface nodes. Consequently we obtain the following partially 103

assembled Schur complement system: 104

⎡
⎣

S s
rr S s

rcB
s
c

ns

∑
s=1

Bs
c

T S s
crB

s
r

ns

∑
s=1

Bs
c

T S s
ccB

s
c

⎤
⎦
{

U s
r

Uc

}
=

{
F s

r
0

}
, (13)

where F s
r = D s

r B
s
rr j, and r j is the residual of the jth iteration of PCGM, and D s

r is 105

a block diagonal weighting matrix which satisfies
ns

∑
s=1

Bs
r

T D s
r B

s
r = I. Next, U s

r can 106

be eliminated from Eq. (13) leading to the following coarse problem 107

F̃ccUc = d̃c, (14)

where F̃cc =
ns

∑
s=1

Bs
c

T (S s
cc−S s

cr[S
s

rr]
−1S s

rc)B
s
c and d̃c = −

ns

∑
s=1

Bs
c

T S s
cr[S

s
rr]
−1F s

r . 108

The two-level preconditioner can be expressed as 109

M−1 =
ns

∑
s=1

Bs
r

T D s
r [S

s
rr]
−1D s

r B
s
r +RT

0 [F̃cc]
−1R0, (15)

where R0 =
ns

∑
s=1

Bs
c

T S s
cr[S

s
rr]
−1D s

r B
s
r . 110

5 Dual-Primal Iterative Substructuring of SPDEs 111

In the dual-primal method [1], the continuity condition on the corner nodes is en- 112

forced strictly while Lagrange multipliers are used to weakly enforce the continuity 113

on the remaining interface. Partial assembly of the corner node unknowns leads to 114

the following system 115
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A s
ii A s

ir A s
icB

s
c 0

A s
ri A s

rr A s
rcB

s
c Bs

r
T

ns

∑
s=1

Bs
c

T A s
ci

ns

∑
s=1

Bs
c

T A s
cr

ns

∑
s=1

Bs
c

T A s
ccB

s
c 0

0
ns

∑
s=1

Bs
r 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

U s
i

U s
r

Uc

Λ

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F s
i

F s
r

ns

∑
s=1

Bs
c

T F s
c

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

(16)

where
ns

∑
s=1

Bs
rU

s
r = 0 and Λ T = {λλλ 0, · · · ,λλλ N}. The matrix Bs

r is a block diagonal 116

signed Boolean continuity operator and λλλ j is the nodal force vector required to 117

satisfy continuity on the remaining interface nodes. Eliminating U s
i and U s

r from 118

Eq. (16) leads to the following interface problem 119

[
F̄cc −F̄cr

F̄rc F̄rr

]{
Uc

Λ

}
=

{
d̄c

d̄r

}
, (17)

where 120

F̄cc =
ns

∑
s=1

Bs
c

T (S s
cc−S s

cr[S
s

rr]
−1S s

rc)B
s
c, F̄cr =

ns

∑
s=1

Bs
c

T S s
cr[S

s
rr]
−1Bs

r
T

F̄rc =
ns

∑
s=1

Bs
r [S

s
rr]
−1S s

rcB
s
c, F̄rr =

ns

∑
s=1

Bs
r [S

s
rr]
−1Bs

r
T

d̄c =
ns

∑
s=1

Bs
c

T (G s
c −S s

cr[S
s

rr]
−1G s

r ), d̄r =
ns

∑
s=1

Bs
r [S

s
rr]
−1G s

r

Solving for Uc from Eq. (17) gives the following coarse problem 121

F̄ccUc = (d̄c + F̄crΛ) (18)

Substituting Uc into Eq. (17) leads to the following symmetric positive definite La- 122

grange multiplier system 123

(F̄rr + F̄rc[F̄cc]
−1F̄cr)Λ = d̄r− F̄rc[F̄cc]

−1d̄c. (19)

The Lagrange multiplier system in Eq. (19) is solved using PCGM equipped with a 124

Dirichlet precondtioner defined as M̄ =
ns

∑
s=1

Bs
rD

s
r S

s
rrD

s
r B

s
r

T . 125

6 Numerical Results 126

For numerical illustrations, we consider the following elliptic SPDE 127

∇ · (κ(x,θ )∇u(x,θ )) = f (x), x ∈Ω , (20)

u(x,θ ) = 0, x ∈ ∂Ω . (21)
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The coefficient κ(x,θ ) is modeled as a lognormal stochastic process, obtained from 128

the underlying Gaussian process with an exponential covariance function given as 129

Cαα(x,y) = σ2 exp

(
−|x1− y1|

b1
− |x2− y2|

b2

)
. (22)

The lognormal process is approximated using four-dimensional second order PC 130

expansion (L = 15). Finite element discretization results in 375,444 elements and 131

186,925 nodes. The response is expressed using third order PCE (N = 34) leading to 132

a linear system of order 6,542,375. The mean and standard deviation of the solution 133

process are shown in Fig. 2. The PCGM iteration counts for the primal and dual- 134

primal methods for fixed problem size in the spatial domain is reported in Table 1 for 135

1st, 2nd and 3rd order of PCE. The results suggest that the methods are numerically 136

scalable with respect to number of subdomains. Table 2 shows the iteration counts of 137

the methods when we fix spatial problem size per subdomain and increase the overall 138

problem size by adding more subdomains. Again these results suggest that both the 139

methods are numerically scalable with respect to fixed problem size per subdomain. 140

(a) (b)

Fig. 2. The mean and standard deviation of the solution field. (a) Mean. (b) Standard deviation
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Table 1. Iteration counts for fixed problem size in geometric space

Subdomain PP-DDM DP-DDM

1st 2nd 3rd 1st 2nd 3rd

8 11 12 12 9 9 9
16 12 13 13 10 10 10
32 14 14 14 11 11 11
64 13 14 14 10 10 10
128 14 14 14 10 10 10
256 14 14 14 10 10 10
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Table 2. Iteration counts for fixed problem size per subdomain in geometric space

Subdomain PP-DDM DP-DDM

1st 2nd 3rd 1st 2nd 3rd

8 9 9 9 8 8 8
16 12 12 12 10 10 10
32 12 13 13 10 10 10
64 13 14 14 10 10 10
128 14 14 14 10 10 10
256 15 15 15 11 11 11

7 Conclusion 141

Primal and dual-primal domain decomposition methods are proposed to solve the 142

large-scale linear system arising from the finite element discretization of SPDEs. 143

The proposed techniques exploit a coarse grid in the geometric space which makes 144

the methods numerically scalable with respect to fixed geometric problem size, fixed 145

geometric size per subdomain and the order of PCE. 146
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