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1 Introduction 7

During the last two decades many domain decomposition algorithms have been con- 8

structed and lot of techniques have been developed to prove the convergence of the 9

algorithms at the continuous level. Among the techniques used to prove the conver- 10

gence of classical Schwarz algorithms, the first technique is the maximum principle 11

used by Schwarz. Adopting this technique M. Gander and H. Zhao proved a conver- 12

gence result for n-dimensional linear heat equation in [4]. The second technique is 13

that of the orthogonal projections, used by P. L. Lions in [7], and his convergence 14

results are for linear Laplace equation and linear Stokes equation. In the same pa- 15

per, P. L. Lions also proved that the Schwarz sequences for linear elliptic equations 16

are related to classical minimization methods over product spaces and this technique 17

was then used by L. Badea in [1] for nonlinear monotone elliptic problems. Another 18

technique is the Fourier and Laplace transforms used in the papers [3, 5] for some 19

1-dimensional evolution equations, with constant coefficients. In [10, 11], S. H. Lui 20

used the idea of upper-lower solutions methods to study the convergence problem for 21

some PDEs, with initial guess to be an upper or lower solution of the equations and 22

monotone iterations. For nonoverlapping optimized Schwarz methods, P. L. Lions 23

in [8] proposed to use an energy estimate argument to study the convergence of the 24

algorithm. The energy estimate technique was then developed in [2] for Helmholtz 25

equation and it has then become a very powerful tool to study nonoverlapping prob- 26

lems. J.-H. Kimn in [6] proved the convergence of an overlapping optimized Schwarz 27

method for Poisson’s equation with Robin boundary data and S. Loisel and D. B. 28

Szyld in [9] extended the technique of J.-H. Kimn to linear symmetric elliptic equa- 29

tion. Another technique is to use semiclassical analysis, which works for overlapping 30

optimized Schwarz methods with rectangle subdomains, linear advection diffusion 31

equations on the half plane (see [12]). This paper is devoted to the study of the con- 32

vergence of Schwarz methods at the continuous level. We give a sketch of the proof 33

of the convergence of optimized Schwarz methods for semilinear parabolic equa- 34

tions, with multiple subdomains. Complete convergence proofs for both classical 35
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and optimized Schwarz methods, both semilinear parabolic and elliptic equations, 36

with multiple subdomains could be found in [13]. 37

2 Convergence for Semilinear Parabolic Equations 38

Consider the following parabolic equation 39

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂ t (x, t)−∑n

i, j=1 ai, j(x) ∂ 2u
∂xi∂x j

(x, t)+∑n
i=1 bi(x) ∂u

∂xi
(x, t)

+c(x)u(x, t) = F(x, t,u(x, t)), in Ω × (0,∞),
u(x, t) = g(x, t), on ∂Ω × (0,∞),
u(x,0) = g(x,0), on Ω ,

(1)

where Ω is a bounded and smooth enough domain in R
n. The following conditions 40

are imposed on 1). 41

(A1) For all i, j in {1, . . . , I}, ai, j(x) = a j,i(x). There exist strictly positive numbers 42

λ , Λ such that A = (ai, j(x))≥ λ I in the sense of symmetric positive definite matrices 43

and ai, j(x)< Λ in Ω . 44

(A2) The functions ai, j, bi, c are in C∞(Rn) and g is in C∞(Rn+1). 45

(A3) There exists C > 0, such that ∀ t ∈ R, ∀ x ∈ R
n, |F(x, t,z)− F(x, t,z′)| ≤ 46

C|z− z′|, ∀ z, z′ ∈ R. We now describe the way that we decompose the domain Ω : 47

The domain Ω is divided into I smooth overlapping subdomains {Ωl}l∈{1,I}: 48

(∂Ωl\∂Ω)∩ (∂Ωl′ \∂Ω) = , ∀ l, l′ ∈ {1, . . . , I}, l �= l′; 49

50

∀l ∈ {1, . . . , I},∀l′, l′′ ∈ Jl , l
′′ �= l′, Ωl′ ∩Ωl′′ = , 51

where 52

Jl = {l′|Ωl′ ∩Ωl �= }; 53
54

∪n
l=1Ωl = Ω . 55

This decomposition means that we do not consider cross-points in this paper. 56

Denote by Γl,l′ , for l′ ∈ Jl , the set (∂Ωl\∂Ω)∩Ω l′ . The transmission operator Bl,l′ 57

is of Robin type Bl,l′v = ∑n
i, j=1 ai, j

∂v
∂xi

nl,l′, j + pl,l′v and nl,l′, j is the j-th component 58

of the outward unit normal vector of Γl,l′ ; pl,l′ is positive and belongs to L∞(Γl,l′). 59

The iterate #k in the l-th domain, denoted by uk
l of the Schwarz waveform relaxation 60

algorithm is defined by: 61

{
∂uk

l
∂ t −∑n

i, j=1 ai, j
∂ 2uk

l
∂xi∂x j

+∑n
i=1 bi

∂uk
l

∂xi
+ cuk

l = F(t,x,uk
l ), in Ωl× (0,∞),

Bl,l′u
k
l =Bl,l′u

k−1
l′ , on Γl,l′ × (0,∞),∀l′ ∈ Jl ,

(2)

where 62
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uk
l (x, t) = g(x, t) on (∂Ωl ∩∂Ω)× (0,∞), uk

l (x,0) = g(x,0) in Ωl . 63

The initial guess u0 is bounded in C∞(Ω × (0,∞)); and at step 0, the Eq. (2) is solved 64

with boundary data 65

Bl,l′u
1
l (x, t) = u0(x, t) on Γl,l′ × (0,∞),∀l′ ∈ Jl .

A compatibility condition on u0(x, t) is also assumed 66

Bl,l′g(x,0) = u0(x,0) on Γl,l′ ,∀l′ ∈ Jl .

By an induction argument, the algorithm is well-posed. Let ek
l be uk

l −u 67

⎧⎪⎨
⎪⎩

∂ek
l

∂ t −∑n
i, j=1 ai, j(x)

∂ 2ek
l

∂xi∂x j
+∑n

i=1 bi(x)
∂ek

l
∂xi

+c(x)ek
l = F(t,x,uk

l )−F(t,x,u), in Ωl× (0,∞),

Bl,l′e
k
l (x, t) =Bl,l′e

k−1
l′ (x, t), on Γl,l′ × (0,∞),∀l′ ∈ Jl .

(3)

Moreover, 68

ek
l (x, t) = 0 on (∂Ωl ∩∂Ω)× (0,∞), ek

l (x,0) = 0 in Ωl . 69

For any function f in L2(0,∞), define 70

∫ ∞

0
f (x)exp(−yx)dx.

For any fixed positive number α , define 71

| f |α = sup
α ′>α

[∫ α ′+1

α ′

(∫ ∞

0
f (x)exp(−yx)dx

)2

dy

] 1
2

,

and 72

L
2
α (0,∞) = { f : f ∈ L2(0,∞), | f |α < ∞}. 73

Thus (L2
α(0,∞), |.|α ) is a normed subspace of L2(0,∞). 74

Theorem 1. Consider the Schwarz algorithm with Robin transmission conditions 75

and the initial guess u0 in C∞
c (Ω × (0,∞)). There exists a constant α large enough 76

such that 77

lim
k→∞

I

∑
l=1

∫
Ωl

|ek
l |2α dx = 0.

Proof. Let gl be a function bounded and greater than 1 in C∞(Rn,R), α be a positive 78

constant, we define 79

Φk
l (x) :=

(∫ ∞

0
ek

l exp(−αt)dt

)
gl(x),



Page 522

UN
CO

RR
EC

TE
D

PR
O
O
F

Minh-Binh Tran

then Φk
l (x) belongs to H1(Ωl). Let Bl

i and Cl be functions in L∞(Rn) defined by 80

Bl
i := bi +

n

∑
j=1

(
ai, j

∂ jgl

gl

)
, 81

82

Cl =

[
α
2
+

n

∑
i, j=1

(
−ai, j

2∂igl∂ jgl

(gl)2 − ∂ jai, j
∂ig
g

+ ai, j
∂i, jgl

gl

)
−

n

∑
i=1

bi
∂igl

gl

]
. 83

Define 84

LlR(Φk
l ) = −

n

∑
i, j=1

∂ j(ai, j∂iΦk
l )+

n

∑
i=1

Bl
i∂iΦk

l +ClΦk
l

+

{∫ ∞

0

[(α
2
+ c
)

ek
l −F(uk

l )+F(u)
]

exp(−αt)dt

}
gl .

It is possible to suppose α to be large such that Cl belongs to (α
4 ,α). 85

Lemma 1. Choose gl, gl′ such that ∇gl = ∇gl′ = 0 on Γl,l′ and
gl′
gl

> 1 on Γl,l′ , for all 86

l′ in Jl. Φk
l is then a solution of the following equation 87{

LlR(Φk
l ) = 0, in Ωl× (0,∞),

βlBl,l′(Φk
l ) =Bl,l′(Φk−1

l′ ) on Γl,l′ × (0,∞),∀l′ ∈ Jl .
(4)

where βl =
gl′
gl

on Γl,l′ , for all l′ in Jl . 88

For all l in {1, I}, denote by Ω̃l the open set Ωl\∪l′∈Jl
Ωl′ . For all l in I such that 89

ϕk+1
l =ϕk

l′ on Γl,l′ for all l′ in Jl , let ϕk
l and ϕk+1

l be functions in H1(Ω̃l) and H1(Ωl) . 90

Use the test functions ϕk+1
l and ϕk

l , and take the sum (with respect to l in {1, I}) of 91∫
Ω̃l
LlR(Φk+1

l )ϕk+1
l and

∫
Ω̃l
LlR(Φk

l )ϕ
k
l to get 92

−
I

∑
l=1

{∫
Ω̃l

ClΦk
l ϕk

l dx+

+

∫
Ω̃l

n

∑
i, j=1

ai, j∂iΦk
l ∂ jϕk

l dx+
n

∑
i=1

∫
Ω̃l

Bl
i∂iΦk

l ϕk
l dx− ∑

l′∈Jl

∫
Γl′ ,l

pl′,lΦk
l ϕk

l dσ

+

∫
Ω̃l

{∫ ∞

0

[(α
2
+ c
)

ek
l −F(uk

l )+F(u)
]

exp(−αt)dt

}
glϕk

l dx

}
(5)

=
I

∑
l=1

βl

{∫
Ωl

ClΦk+1
l ϕk+1

l dx+

+

∫
Ωl

n

∑
i, j=1

ai, j∂iΦk+1
l ∂ jϕk+1

l dx+ ∑
l′∈Jl

∫
Γl,l′

pl,l′Φk+1
l ϕk+1

l dσ

+

∫
Ωl

n

∑
i=1

Bl
i∂iΦk+1

l ϕk+1
l dx+

+
∫

Ωl

{∫ ∞

0

[(α
2
+ c
)

ek+1
l −F(uk+1

l )+F(u)
]

exp(−αt)dt

}
glϕk+1

l dx

}
.
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In (5), choose ϕk+1
l to be Φk+1

l , then there exists ϕk
l , such that for all l′ in Jl ϕk

l =ϕk+1
l′ 93

on Γl,l′ and 94

||ϕk
l ||H1(Ωl)

≤C ∑
l′∈Jl

||ϕk+1
l′ ||H1(Ωl′ )

and ||ϕk
l ||L2(Ωl)

≤C ∑
l′∈Jl

||ϕk+1
l′ ||L2(Ωl′ )

, 95

where C is a positive constant. 96

The right hand side of (5) is then greater than or equal to 97

I

∑
l=1

βl

{∫
Ωl

λ |∇Φk+1
l |2dx−

n

∑
i=1

∫
Ωl

||Bl
i ||L∞(Ωl)

∣∣∣∂iΦk+1
l

∣∣∣ |Φk+1
l |dx

}
.

≥
I

∑
l=1

βl

{∫
Ωl

λ
2
|∇Φk+1

l |2dx+
α
8

∫
Ωl

|Φk+1
l |2

}
. (6)

Similarly, the left hand side of (5) is less than or equal to 98

I

∑
l=1

{∫
Ω̃l

Λ |∇Φk
l ||∇ϕk

l |dx+
n

∑
i=1

∫
Ω̃l

||Bl
i||L∞(Ω̃l)

∣∣∣∂iΦk
l

∣∣∣ |ϕk
l |dx

+ ∑
l′∈Jl

||pl′,l ||L∞(Γl′ ,l)(||Φk
l ||2H1(Ω̃l)

+ ||ϕk
l ||2H1(Ω̃l)

)

}

≤
I

∑
l=1

M1

{
1
2
(||∇Φk

l ||2L2(Ω̃l)
+ ( max

i∈{1,I}
||Bl

i||L∞(Ω̃l)
)2||ϕk

l ||2L2(Ω̃l)
)

+
∫

Ω̃l

2α|Φk
l ||ϕk

l |dx+ ∑
l′∈Jl

∫
Γl′ ,l

pl′,l |Φk
l ||ϕk

l |dσ (7)

+Λ
(
||∇Φk

l ||2L2(Ω̃l )
+ ||∇ϕk

l ||2L2(Ω̃l)

)
+

α
2
||Φk

l ||2L2(Ω̃l)
+

α
2
||ϕk

l ||2L2(Ω̃l)

}
,

where M1 depends only on {Ωl}l∈{1,I} and the Eq. (3). Choose α such that α > 99

(maxi∈{1,I} ||Bl
i||L∞(Ω̃l)

)2, there exists M2 positive, depending only on {Ωl}l∈{1,I} 100

and (3) such that the right hand side of (7) is dominated by 101

I

∑
l=1

M2

{∫
Ω̃l

(
λ
2
|∇Φk

l |2dx+
α
8
|Φk

l |2 +
λ
2
|∇Φk+1

l |2 + α
8
|Φk+1

l |2
)

dx

}
(8)

≤
I

∑
l=1

M2

(
λ
2
||∇Φk

l ||2L2(Ωl)
+

α
8
||Φk

l ||2L2(Ωl)
+

λ
2
||∇Φk+1

l ||2L2(Ωl)
+

α
8
||Φk+1

l ||2L2(Ωl)

)
.

102

Define 103

Ek :=
I

∑
l=1

(
λ
2
||∇Φk

l ||2L2(Ωl)
+

α
8
||Φk

l ||2L2(Ωl)

)
, (9)

then (6), (7), and (8) imply 104
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(β −M2)Ek+1 ≤M2Ek, (10)

where β = min{β1, . . . ,βI}. 105

Since M2 depends only on {Ωl}l∈{1,I} and (3), β can be chosen such that 106

M3 :=
M2

β −M2
< 1. 107

We get 108

Ek ≤ Mk
3E0

≤ Mk
3

I

∑
l=1

(
λ
2
||∇Φ0

l ||2L2(Ωl)
+

α
8
||Φ0

l ||2L2(Ωl)

)
.

That deduces 109

||Φk
l ||2L2(Ωl)

≤Mk
3

I

∑
l=1

(
4λ
α
||∇Φ0

l ||2L2(Ωl)
+ ||Φ0

l ||2L2(Ωl)

)
. (11)

Since (11) still holds if M3 and λ are fixed, and α is replaced by y > α , then 110

I

∑
l=1

∫
Ωl

(∫ ∞

0
ek

l exp(−yt)dtgl

)2

dx (12)

≤ Mk
3

[
4λ
y

I

∑
l=1

∫
Ωl

(∫ ∞

0
|∇e0

l |exp(−yt)dt

)2

g2
l dx

+
4λ
y

I

∑
l=1

∫
Ωl

(∫ ∞

0
e0

l exp(−yt)dt

)2

|∇gl|2dx

+
I

∑
l=1

∫
Ωl

(∫ ∞

0
e0

l exp(−yt)dt

)2

g2
l dx

]
.

Let α ′ be a constant larger than or equal to α , (12) implies 111

I

∑
l=1

∫
Ωl

∫ α ′+1

α ′

(∫ ∞

0
ek

l exp(−yt)dt

)2

g2
l dydx (13)

≤ Mk
3

[
I

∑
l=1

∫
Ωl

∫ α ′+1

α ′
4λ
y

(∫ ∞

0
|∇e0

l |exp(−yt)dt

)2

g2
l dydx

+
I

∑
l=1

∫
Ωl

∫ α ′+1

α ′
4λ
y

(∫ ∞

0
e0

l exp(−yt)dt

)2

|∇gl|2dydx

+
I

∑
l=1

∫
Ωl

∫ α ′+1

α ′

(∫ ∞

0
e0

l exp(−yt)dt

)2

g2
l dydx

]
.

Since u0 belongs to C∞
c (Ω × (0,∞)), the right hand side of (13) is bounded by a 112

constant Mk
3M4(α). The fact that gl is greater than 1 implies 113
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I

∑
l=1

∫
Ωl

∫ α ′+1

α ′

(∫ ∞

0
ek

l exp(−yt)dt

)2

dydx≤Mk
3M4(α). (14)

Inequality (14) deduces 114

lim
k→∞

I

∑
l=1

∫
Ωl

|ek
l |2α dx = 0. (15)
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