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Summary. In this contribution we extend the FETI-DP mortar method for elliptic problems 9

introduced by Bernardi et al. [2] and Chacón Vera [3] to the case of the incompressible Stokes 10

equations showing that the same results hold in the two dimensional setting. These ideas 11

extend easily to three dimensional problems. Finally some numerical tests are shown as a 12

conclusion. This contribution is a condensed version of a more detailed forthcoming paper. 13

We use standard notation, see for instance [1]. 14

1 Incompressible Stokes Equations 15

Let Ω ⊂ R
2 be a polygonal domain. We look for u ∈ H1

0(Ω) = (H1
0 (Ω))2 and p ∈ 16

L2(Ω) such that
∫

Ω p = 0 and 17

(∇u,∇v)Ω − (p,div(v))Ω = ( f ,v)Ω , ∀v ∈H1
0(Ω)

−(q,div(u))Ω = 0, ∀q ∈ L2(Ω).

We better accomodate the restriction on the pressure by adding a new scalar 18

unknown: we look for a pair of values (u,τ) ∈ H1
0(Ω)×R and p ∈ L2(Ω) such 19

that 20

(∇u,∇v)Ω − (p,div(v))Ω + t (τ−
∫

Ω
p) = ( f ,v)Ω , ∀(v, t) ∈H1

0(Ω)×R

−(q,div(u))Ω − τ
∫

Ω
q = 0, ∀q ∈ L2(Ω).

Set W =H1
0(Ω)×R normed by ‖v‖2

W = ‖(v, t)‖2
W = ‖∇v‖2

0,Ω + t2 for any v = (v, t)∈ 21

W , let (·, ·)W be the scalar product on W and b : W ×L2(Ω) �→ R given by 22

b(q,(v, t)) =−(q,div(v))Ω − t
∫

Ω
q. 23

Then, we look for u = (u,τ) ∈W and p ∈ L2(Ω) such that 24
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(u,v)W + b(p,v) = ( f ,v)Ω , ∀v ∈W (1)

b(q,u) = 0, ∀q ∈ L2(Ω). (2)

It is quite straightforward to see that: 25

Lemma 1. There exists a positive constant β > 0 such that for all p ∈ L2(Ω) 26

sup
(v,t)∈W

b(p,(v, t))
‖(v, t)‖W ≥ sup

v∈H1
0(Ω),t∈R

b(p,(v, t))

(‖∇v‖2
0,Ω + t2)1/2

≥ β‖p‖0,Ω . (3)

As a consequence, problem (1)–(2) is well posed and its unique solution is the one of 27

the original Stokes problem with Dirichlet homogeneous boundary conditions. 28

Next, we split Ω =∪S
s=1Ω s with nonoverlaping polygonal subdomains, suppose that 29

Γs,t = ∂Ω s∩∂Ω t
30

is either an edge (i.e., a segment), a crosspoint or empty and, finally, consider E0 = 31

{Γe}e=1,..,E the sorted set of all edges inside Ω . We suppose that each Ω s is of area 32

O(H2) and shape regular while each Γe is of length O(H) for some fixed H > 0. 33

The set of all vertices of the polygonal subdomains Ω s that are not on ∂Ω will be 34

called cross points and denoted by C . Finally, we denote by [v]Γe the jump across 35

any interface Γe. 36

We take 37

Xδ = {v ∈ L2(Ω);vs = v|Ωs ∈ H1(Ω s)∩H1
0 (Ω), 1≤ s≤ S},

X = {v ∈ Xδ , [v]Γe ∈H1/2
00 (Γe), ∀Γe ∈ E0}.

With X = X ×X we construct V = X×R and represent by v = (v, t) any element 38

of V where v ∈ X and t ∈ R. V is Hilbert space with norm ‖v‖2
V = |v|2X + t2 where, 39

thanks to Poincaré’s inequality, the norm of v is 40

|v|X = {
S

∑
s=1
‖∇vs‖2

0,Ω s +
E

∑
e=1
‖[v]Γe‖2

1/2,00,Γe
}1/2.

Here, ‖·‖1/2,00,Γe is the norm induced by the scalar product (·, ·)1/2,00,Γe on H1/2
00 (Γe), 41

see [5]. To simplify, let {·, ·}Γe = (·, ·)1/2,00,Γe . For the pressure space we consider 42

M =∏S
s=1 L2(Ω s)(≈ L2(Ω)) and define the continuous bilinear form b : M×V �→R 43

given by 44

b(q,v) = −
S

∑
s=1

(qs,div(vs))Ω s − t
S

∑
s=1

∫
Ω s

qs, ∀qs ∈ L2(Ω s).

Next, for each Γe ∈ E0 we take H1/2
00 (Γe) = (H1/2

00 (Γe))
2, and handle the Lagrange 45

multipliers for the jumps with the space N = ∏E
e=1 H1/2

00 (Γe). 46
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We propose to look for u = (u,τ) ∈ V, p = {ps}s ∈M and λ = {λe}e ∈ N such 47

that 48

S

∑
s=1

(∇us,∇vs)Ω s +
E

∑
e=1
{[u]Γe , [v]Γe}Γe + τ t

−
S

∑
s=1

(ps,div(vs))Ω s − t
S

∑
s=1

∫
Ω s

ps +
E

∑
e=1
{λe, [v]Γe}Γe =

S

∑
s=1

( f ,vs)Ω s ,

−
S

∑
s=1

(qs,div(us))Ω s − τ
S

∑
s=1

∫
Ω s

qs = 0,

E

∑
e=1

{μe, [u]Γe}Γe = 0

for all v = (v, t) ∈ V, q = {qs}s ∈M and μ = {μe}e ∈ N. 49

We see that we added the jumps to the elliptic terms and replaced the pair- 50

ings H−1/2
00 (Γ )−H1/2

00 (Γ ) for the normal fluxes on the edges by the scalar product 51

in H1/2
00 (Γ ). As a consequence, we have made a regularization of order 1 for the 52

Lagrange multipliers and now all terms are suitable to compute in a Galerkin ap- 53

proach. Moreover, the solution to this problem is that of the incompressible Stokes 54

equations on Ω . 55

Next, we elliminate via a standard Schur process the primal variables u and p 56

in terms of the dual variable λ , and obtain a dual problem that once solved will 57

give the correct boundary data for the primal variables. Thanks to the fact that the 58

elliptic part is the scalar product on V, that the inf-sup condition for the bilinear form 59

b is achieved with velocities without jumps and that the inf-sup condition for c is 60

achieved with velocities with jumps, our dual problem is a well posed symmetric 61

positive definite problem. 62

2 Finite Dimensional Approach 63

We consider a conforming triangulation Th, h is the mesh size, of Ω that contains 64

the skeleton E0 as union of edges of triangles and such that on each edge only one 65

partition is inherited from both sides. As Th is also compatible with the subdivision 66

of Ω , its restriction to each Ωs gives a mesh T s
h on Ω s. We use the Taylor-Hood finite 67

element for the velocity and pressure pair on each subdomain. Define the family of 68

subspaces {Yh}h ⊂ H1
0 (Ω) and {Qh}h ⊂ H1(Ω) given by 69

Yh = {v ∈ H1
0 (Ω); v|κ ∈ P2(κ), ∀κ ∈ Th},

Qh = {p ∈ H1(Ω); p|κ ∈ P1(κ), ∀κ ∈Th}

where Pr(κ) is the space of polynomials of degree less or equal to r in the two 70

variables x and y. On each subdomain, we take also 71
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Yh(Ω s) = Yh∩H1(Ω s), Qh(Ω s) = Qh∩H1(Ω s), s≤ S.

Consider now Xh = Xh×Xh, where Xh is the broken version of Yh given by 72

Xh = {v ∈ L2(Ω); vs ∈ Y s
h , ∀ s = 1,2, . . . ,S,

and v is continuous at every cross point in C } ⊂ X ,

define Vh = Xh×R, Mh = ∏S
s=1 Qh(Ω s) and finally Nh ⊂ N is given by the restric- 73

tion of functions in Xh to the skeleton E0. 74

The discrete uniform inf-sup condition for c on the pair Vh and Nh is by now a 75

well known result and the discrete uniform inf-sup condition for b is a consequence 76

of Theorem 1.12 pp. 130 in [4]. The idea is to use locally on each subdomain Ω s the 77

stability of the pair P2−P1 and that of the pair P2−P0 globally on the substructures 78

Ω s of Ω . This inf-sup condition is achieved with a discrete continuous function 79

in the wohle of Ω and, as a consequence, the continuous setting is replicated and 80

the equation for the multiplier can be solved via Conjugate Gradient Method (CG) 81

without preconditioner. Then, we have 82

1. An external computational cicle, the CG for the Lagrange multiplier with a fixed 83

number of iterations independent of the discretization parameter h and 84

2. At each iteration of this external cicle, the resolution of a primal problem of the 85

form: 86

Find (wh,qh) ∈Vh×Mh such that 87

(wh,vh)V + b(qh,vh) = (ξ ,vh) ∀vh ∈ Vh,

b(p,wh) = 0 ∀p ∈Mh

where for the initial residuous r0 we have (ξ ,vh) = ∑S
s=1( f ,vs

h)Ω s and for the 88

iteration m≥ 0 we have (ξ ,vh) = ∑E
e=1{{dm}e, [vh]Γe}Γe = 0 89

A closer inspection to the general form of this saddle point problem for the primal 90

variables shows that the solution can be obtained by means of independent solves 91

per subdomain. Ordering the unknows per subdomains, xs = (us, ps) and xC = uC, 92

the linear system for the primal variables is 93

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M11 M1,2 . . . . . . . . . M1,S M1,C D1

M21 M2,2 M2,3 . . . . . . . . . M2,C D2

M31 M3,2 M3,3 M3,4 . . . . . . M3,C D3
...

. . .
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...
... . . . . . . . . . MS,S−1 MS,S MS,C DS

Mt
1,C Mt

2,C . . . . . . Mt
S−1,C Mt

S,C MC,C 0
Dt

1 Dt
2 . . . . . . Dt

S−1 Dt
S 0t 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

...
xS

xC

τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

b3

...

...
bS

bC

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the different blocks are of the form 94
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Ms,s =

(
As,s Bs,s

Bt
s,s 0

)
, Ms,s′ =

(
As,s′ 0

0 0

)
, Ms,C =

(
As,C

Bt
s,C

)
, MC,C = AC,C 95

here each block Ms,s is similar to a standard Stokes matrix on the subdomain Ω s, 96

but with our interface contributions, each block Ms,s′ is sparse and contains the 97

interaction through interfaces of the domain Ω s with Ω s′ , the rectangular blocks Ms,C 98

contains the interaction with the crosspoints and MC,C contains the interaction of the 99

crosspoints with themselves. Although this linear system couples all the subdomains 100

it can be solved by means of the Preconditioned Conjugate Gradient Method using 101

as a preconditioner the matrix P formed by the main blocks 102

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M11 0 . . . . . . 0 M1,C D1

0 M2,2 0 . . . 0 M2,C D2

0 0 M3,3 0
. . . M3,C D3

...
. . .

. . .
. . .

. . .
...

...
. . . . . . . . . 0 MS,S MS,C DS

Mt
1,C Mt

2,C . . . Mt
S−1,C Mt

S,C MC,C 0
Dt

1 Dt
2 . . . Dt

S−1 Dt
S 0t 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the main task here is the resolution of a linear system of the form Px = b 103

which is done using a Schur complement process for the variables xC and τ . The 104

equations are 105

(MC,C−
S

∑
s=1

Mt
s,CM−1

s,s Ms,C)xC−
S

∑
s=1

Mt
s,CM−1

s,s Ds τ = bC−
S

∑
s=1

Mt
s,CM−1

s,s bs,

S

∑
s=1

Dt
sM
−1
s,s Ms,C xC +(

S

∑
s=1

Dt
sM
−1
s,s Ds−1)τ =

S

∑
s=1

Dt
sM
−1
s,s bs.

We finally write xC in terms of τ and solve first for τ , next xC and finally compute all 106

the xs. As a consequence, the main job is performed with independent solves of the 107

matrices Ms,s that can be performed independently, i.e., computations of the form 108

M−1
s,s bs, M−1

s,s Ms,C, M−1
s,s Ds. 109

3 Some Numerical Tests 110

For L = 1,2,3, . . . integer we consider on ΩL = [0,L]× [0,1] the exact solution 111

u(x,y) =

( −sin3(π xL−1)sin2(πy)cos(πy)

−L−1 sin2(π xL−1)sin3(πy)cos(πxL−1)

)
, p(x,y) =

x2

L2 − y2
112

and partition ΩL into Ω s
L = (s−1,s)× (0,1) for s = 1,2, . . . ,L. For the dual problem 113

we start our iteration process with λ0,e = 0 on each Γe and stop all iterations according 114
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to a relative residual less than 10−6. In this example the gradients control the jumps 115

and there is no need to introduce them in the elliptic part; then the blocks Ms,t are 116

null for s �= t. Then, there is no need for a PCG in the internal cycle. The following 117

Table 1 shows that the iteration count for the dual problem is mesh independent on 118

different configurations Table 2 shows relative errors with respect to the true solution

h = 1/24 h = 1/48 h = 1/96
L = 4 17 17 17
L = 8 23 24 24
L = 16 37 39 39

Table 1. Mesh independent iteration count for the dual problem on different configurations
and for different values of h on ΩL = [0,L]× [0,1]. The number of subdomains is L given by
Ω s = [s−1,s]× [0,1] for s = 1,2,3, . . . ,L

119

u and p on ΩL Finally, we take on Ω = (0,1)2 the exact solution

t1.1eu(h) h = 1/24 h = 1/48 h = 1/96
t1.2L = 4 2.1e−04 2.6e−05 3.5e−06
t1.3L = 8 1.8e−04 2.3e−05 3.0e−06
t1.4L = 16 1.7e−04 2.2e−05 2.9e−06

ep(h) h = 1/24 h = 1/48 h = 1/96
L = 4 6.7e−04 1.6e−04 4.0e−05
L = 8 6.8e−04 1.6e−04 4.2e−05
L = 16 6.8e−04 1.7e−04 4.3e−05

Table 2. Relative errors in velocity field and pressure for different values of h on ΩL = [0,L]×
[0,1] and with the same configuration as in Table 1

120

u(x,y) =

(
−sin3(π x)sin2(πy)cos(πy)

−sin2(π x)sin3(πy)cos(πx)

)
, p(x,y) = (x−0.25)2(y−0.25)2

121

and partition Ω into 4 equal subdomains with a cross point at (0.5,0.5). Table 3 122

shows the results and we see that the number of iterations is independent of the mesh 123

size again (Fig. 1).AQ1

Dual Initial PCG Final PCG
h # Iters # Iters # Iters eu(h) ep(h)

1/12 7 22 20 6.9e−4 4.2e−03
1/24 7 21 20 8.8e−5 1.0e−03
1/48 7 23 21 1.2e−5 2.5e−04
1/96 7 23 23 1.4e−6 8.3e−05

Table 3. Results obtained when subdividing the domain Ω = (0,1)2 into four subdomains
with a cross point at (0.5,0.5)

124
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Fig. 1. Inital iteration with the underlying mesh and some contiguous iterations for the com-
puted pressure
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4 Conclusions 125

We presented a FETI-DP Mortar method applied to incompressible Stokes equations. 126

Continuity at crosspoints is retained and the jumps across interfaces are included in 127

the continuous formulation. The Lagrange multipliers are represented by their Riesz- 128

canonical isometry, which improves their regularity from H−1/2
00 (Γ ) to H1/2

00 (Γ ), and 129

the mortaring is performed using the H1/2
00 (Γ ) scalar product for each interface Γ . As 130

a consequence, continuous bounds are replicated at the discrete level and no stabi- 131

lization is required. In this setting we solve a dual problem by a CG that has a mesh 132

independent condition number. The primal problems involved include the effect of 133

the coupling between neighboring subdomains at interfaces and are solved by PCG. 134

Still independent solves per subdomains are possible. 135

The advantage of the continuous framework introduced is the clear sight of the 136

effect of condensing all information on subdomains and interfaces before the discrete 137

work starts and the use of, to our belief, the most appropriated norms on subdomains 138

and interfaces that make no necessary the use of mesh dependent norms for obtaining 139

stability. 140
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