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Summary. In this paper, an overlapping domain decomposition method is developed to sim- 11

ulate the water management of the polymer exchange membrane fuel cell on the local struc- 12

tured grids. Numerical experiments demonstrate that our methods are effective to deal with 13

the simulation on the non-matching grids with low mass balance error. 14

1 Introduction 15

Polymer exchange membrane fuel cells (PEMFCs) have been used in a large number 16

of industries worldwide because of their advantages such as low environmental im- 17

pact, rapid start-up and high power density [15, 16]. The performance of fuel cell is 18

affected by many factors, such as material parameters, operating conditions, different 19

channel structures and so on [2, 9, 10]. 20

For better performance, different structures for the anode and cathode gas chan- 21

nels are used in the PEMFC practical design. This asymmetrical structure can keep 22

the balance of pressures on both sides of the membrane. Thus the water manage- 23

ment in cathode can be improved and the duration of fuel cell can be prolonged. An 24

unstructured grid partitioned by tetrahedra or triangles can be used for this asymmet- 25

rical fuel cell in single domain approach, but structured grids, such as hexahedron 26

and quadrilateral, are easily implemented and have super convergence [1, 4, 14]. 27

However, non-matching grids would be generated when partitioning with structured 28

grids in numerical simulations. Besides, since oxygen reduction reaction occurs in 29

cathode, the variation of physical quantities such as water concentration are more 30

significant in cathode than in anode. So it is necessary for cathode to simulate these 31

phenomena accurately by a refined grid. The objective of this paper is to provide an 32

overlapping domain decomposition method for the simulation of a 3D single-phase 33

PEMFC model with local structured grid in anode and cathode respectively. 34
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1.1 Governing Equations 35

Based on [5, 16], a fundamental fuel cell model consists of five principles of con- 36

servation: mass, momentum, species, charge, and thermal energy. Typically the fuel 37

cell is divided into seven subregions: the anode gas channel, anode gas diffusion 38

layer (GDL), anode catalyst layer (CL), membrane, cathode gas channel, cathode 39

GDL, and cathode CL. In the following we specifically focus our interests on mass, 40

momentum conservation and water concentration arising in all seven subregions. 41

Flow equations. For flow field with velocity u and pressure P as unknowns, we 42

have the following modified Navier-Stokes equations 43

∇ · (ρu) = 0, (1)
1
ε2 ∇ · (ρuu) =−∇P+∇ · (μ∇u)+ Su, (2)

where ε is porosity, ρ is density, and μ is effective viscosity. In (2) we indicate that 44

the additional source term Su in GDL and CL is named as Darcy’s drag and defined 45

by Su =− μ
K u, where K is hydraulic permeability. 46

Species concentration equation. Water management is critical to achieve high 47

performance for PEMFC. Therefore, without loss of generality, in order to focus on 48

water management topics, we typically consider water as the only component in the 49

following simplified species concentration equation. Water concentration equation in 50

single gaseous phase is defined as follows with respect to concentration C 51

∇ · (uC) = ∇ · (De f f
g ∇C)+ SH2O, (3)

equation where De f f
g = ε1.5Dgas is the effective water vapor diffusivity. The source 52

term SH2O is given as follows. 53

SH2O =

⎧⎨
⎩
−∇ · ( nd

F ie)− j
2F in cathode CL

−∇ · ( nd
F ie) in anode CL

0 otherwise,
(4)

where nd , the electro-osmotic drag coefficient, is a constant value in our simulation. 54

∇ · ie = − j which is derived from the continuity equation of proton potential. ie is 55

the current density vector and j is the volumetric transfer current of the reaction (or 56

transfer current density) defined by j = j1−( j1− j2)z/lcell . This is an approximation 57

of transfer current density for our simplified single-phase PEMFC model due to the 58

absence of proton and electron potentials [12]. 59

1.2 Computational Domain and Boundary Conditions 60

The computational domain and its geometric sizes are schematically shown in Fig. 1 61

and Table 1. 62

For flow field (1), (2) and water concentration equation (3), the following bound- 63

ary conditions are imposed: 64
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Fig. 1. Geometry of a single straight-channel PEMFC
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Table 1. Physical coefficients and parameters

t1.1Parameter Symbol Parameter Symbol
t1.2Anode/cathode channel width δCH 6.180mm Anode/cathode GDL width δGDL 0.235mm
t1.3Anode/cathode CL width δCL 0.010mm Membrane width δmem 0.018mm
t1.4Cell length lcell 70mm Cell depth hcell 6.360mm
t1.5Porosity of membrane ε 0.26 Effective viscosity μ 3.166×10−5kg/(m · s)
t1.6Porosity of GDL and CL ε 0.6 Water vapor diffusivity Dgas 2.6×10−5m2/s
t1.7Vapor density ρ 0.882 kg/m3 Permeability of GDL and CL K 2×10−12m2

t1.8Electro-osmotic drag coefficient nd 1.5 Transfer current density j1/ j2 20000/10000A/m2

u1 = u2 = 0,u3 = u3|inlet ,C =Cin on inlet (∂Ω)1,(∂Ω)2, (5)

(PI− μ∇u) ·n = 0 on outlet (∂Ω)3,(∂Ω)4, (6)

u1 = u2 = u3 = 0,
∂C
∂n

= 0 on other boundaries. (7)

2 Numerical Algorithm 65

2.1 Domain Decomposition Method and Weak Forms 66

First, we split the domain (Ω ), shown in Fig. 1, to two overlapping subdomains: 67

one is the anode and membrane (Ωa), the other is the cathode and membrane (Ωc). 68

The interface between anode CL and membrane is denoted as Sa, and the inter- 69

face between cathode CL and membrane is denoted as Sc. The classical overlapping 70

Schwarz alternating method [13] is used in these two subdomains. Thus we are able 71

to reformulate Eqs. (1)–(3) to two Dirichlet-type interfacial boundary value subprob- 72

lems. 73
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(Problem A)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (ρua) = 0 in Ωa
1
ε2 ∇ · (ρuaua) =−∇Pa +∇ · (μ∇ua)− μ

K ua in Ωa

∇ · (uaCa) = ∇ · (De f f
g ∇Ca)+ SH2O in Ωa

u1,a = u2,a = 0,u3,a = u3|inlet ,Ca =Ca,in on (∂Ω)1

(PaI− μ∇ua) ·n = 0 on (∂Ω)3

Ca =Cc on Sc

u1,a = u2,a = u3,a = 0, ∂C
∂n = 0 on other boundaries.

74

(Problem C)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (ρuc) = 0 in Ωc
1
ε2 ∇ · (ρucuc) =−∇Pc +∇ · (μ∇uc)− μ

K uc in Ωc

∇ · (ucCc) = ∇ · (De f f
g ∇Cc)+ SH2O in Ωc

u1,c = u2,c = 0,u3,c = u3|inlet ,Cc =Cc,in on (∂Ω)2

(PcI− μ∇uc) ·n = 0 on (∂Ω)4

Cc =Ca on Sa

u1,c = u2,c = u3,c = 0, ∂C
∂n = 0 on other boundaries.

Considering various nonlinearities of equations, we particularly employ Picard’s 75

scheme to linearize the nonlinear source term. Define 76

Va := {va = (v1,a,v2,a,v3,a)
� ∈ [H1]3 | v1,a|(∂Ω)1

= v2,a|(∂Ω)1
= 0,v3,a|(∂Ω)1

= u3,a|inlet},
Ṽa := {va = (v1,a,v2,a,v3,a)

� ∈ [H1]3 | v1,a|(∂Ω)1
= v2,a|(∂Ω)1

= v3,a|(∂Ω)1
= 0},

Qa := {w ∈H1 | w|(∂Ω)1
=Cin,a and w|Sc =Cc}, Q̃a := {w ∈ H1 | w|(∂Ω)1

= 0 and w|Sc = 0},
Pa := L2(Ωa).

Then for any (va,qa,wa) ∈ Ṽa×Pa× Q̃a, find (uk+1
a ,Pk+1

a ,Ck+1
a ) ∈Va×Pa×Qa, 77

such that 78

⎧⎨
⎩

(μ∇uk+1
a ,∇va)Ωa +( ρ

ε2 ∇uk
auk+1

a ,va)Ωa − (Pk+1
a ,∇va)Ωa +( μ

K uk+1
a ,va)Ωa = 0

(∇uk+1
a ,qa)Ωa = 0

(De f f
g ∇Ck+1

a ,∇wa)Ωa +(∇ · (uk
aCa),wa)Ωa = (SH2O,wa)Ωa ,

(8)
which (·, ·)Ωi stands for the L2 inner product in Ωi. And in subdomain Ωc, we have 79

the same weak form with (8). 80

2.2 An Overlapping Domain Decomposition Algorithm 81

Firstly, the subdomains Ωa and Ωc are partitioned into cuboids independently, which 82

implies that the grids are local structured in anode and cathode. Define a partition 83

Thi in Ωi (i, j represent a or c), and Σi, j is the set of mesh points of Thi on S j. 84

To discretize weak form (8), we introduce the finite element space Vhi ×Phi ⊆ 85

Vi×Pi on Thi , where Vhi ×Phi denotes the Q2Q1 (triquadratic velocity and trilinear 86

pressure) finite element spaces. Qha denotes the triquadratic finite element space for 87

water concentration whose members equal fa on Sc, where fa represents the values 88

of points in the sets of Σa,c, which are obtained from the previous alternating step Ck
89
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by lagrange interpolation. Moreover, let Q̃ha ⊆ Q̃a be the triquadratic finite element 90

space and Ṽha ⊆ Ṽa be the triquadratic finite element space. In subdomain Ωc, Qhc 91

and Ṽhc are defined in the same ways. 92

For flow and water concentration equations, we introduce the following com- 93

bined finite element-upwind finite volume schemes [11]. 94

For any given (uk
hi
,Pk

hi
,Ck

hi
) ∈ Vhi ×Phi ×Qhi (k = 0,1,2, . . .), find (uk+1

hi
,Pk+1

hi
, 95

Ck+1
hi

) ∈Vhi×Phi×Qhi(k = 0,1,2, . . .), such that 96

(μ∇uk+1
hi

,∇vhi)Ωi +(
ρ
ε2 ∇uk

hi
uk+1

hi
,vhi)Ωi − (Pk+1

hi
,∇vhi)Ωi +(

μ
K

uk+1
hi

,vhi)Ωi = 0

(∇uk+1
hi

,qhi)Ωi = 0 ∀(vhi ,qhi) ∈ Ṽhi×Phi, (9)

(De f f
g ∇Ck+1

hi
,∇whi)Ωi +(∇ · (uk+1

hi
Ck+1

hi
),whi)Ωi + δ (hi)uk+1

hi
· (∇Ck+1

hi
,∇whi)Ωi

= (SH2O,whi)Ωi ∀whi ∈ Q̃hi , (10)

where the last term in the left hand side of (10) is a stabilizing term, derived from 97

streamline-diffusion scheme [3, 6–8]. Basically we hold δ (h) = Ch, C is a certain 98

constant parameter, which is chosen artificially with least possible on the premise of 99

optimal stability. Usually starting with small ones, we gradually increase the value of 100

C and compute the corresponding finite element equation (10) until gained numerical 101

solutions are not oscillating any more in convection-dominated gas channel. 102

Now, we are in position to describe the overlapping domain decomposition algo- 103

rithm with the finite element discretizations. 104

Algorithm: Given u0
h,C

0
h , the following procedures are successively executed 105

(k > 0): 106

Step 1. Solve (9) in Ωa and Ωc for (uk+1
hi

,Pk+1
hi

), respectively, until 107

‖uk+1
hi
−uk

hi
‖

L2(Ωi)
+ ‖Pk+1

hi
−Pk

hi
‖

L2(Ωi)
< tolerance. (11)

Step 2. Solve (10) for Ck+1
ha

, and construct the finite element space Q̃hc for Ωc. 108

Step 3. Solve (10) for Ck+1
hc

, and construct the finite element space Q̃ha for Ωa. 109

Step 4. Compute the following stopping criteria: 110

‖Ck+1
ha
−Ck

ha
‖

L2(Ωa)
< tolerance. (12)

If yes, then numerical computation is complete. Otherwise, go back to the step 2 111

and continue. 112

3 Numerical Results 113

In this section, we will carry out the following numerical experiments which indi- 114

cate that our methods are effective to deal with the non-matching grids, see Fig. 2 115

for example, in the simulation of the PEMFC. The velocity u3|inlet is defined as a 116

paraboloidal-like function given in (13). 117
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u3|inlet =

{
0.2sin xπ

δCH
sin yπ

δCH
on anode inlet (∂Ω)1

0.3sin xπ
δCH

sin (y−ladd)π
δCH

on cathode inlet (∂Ω)2
, (13)

where ladd = δCH + δGDL + δCL + δmem. 118

Fig. 2. An example of non-matching grids
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Figures 3 and 4 show the velocity field in anode and cathode of fuel cell at the 119

face of x = 3.18 mm with this two method. As expected, there is a large difference 120

in the velocity scale between the porous media and the open channel. The velocity 121

in porous GDL is at least two orders of magnitude smaller than that in the open gas 122

channel, indicating that gas diffusion is the dominant transport mechanism in porous 123

GDL. Porous CL has a smaller velocity than GDL due to the inferior diffusion ability. 124

Fig. 3. Velocity with DDM Fig. 4. Velocity with single domain

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

Figure 5 displays the water concentration distribution, presenting in the phase of 125

water vapor, in anode and cathode. As shown in the figure, significant variations are 126

displayed in both anode and cathode; in the porous media there is an increased water 127

vapor concentration along the channel. 128

In order to verify the correctness of our numerical solutions, we compute the 129

relative error of mass balance in terms of the numerical fluxes at the inlet and outlet. 130

mass balance error =
|∫(∂Ω)outlet

Cu3dS− ∫(∂Ω)inlet
Cinu3|inletdS− ∫Ω SH2OdV |∫

(∂Ω)inlet
Cinu3|inlet dS.

(14)
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Fig. 5. Distributions of water concentration with DDM
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The tolerance of our stopping criteria (12) for Schwarz alternating iteration is 131

10−20. By plugging the assigned and the computed concentration C as well as hor- 132

izontal velocity u3 in Eq. (14), we attain a convergent mass balance error for our 133

numerical solutions along with the continuously refining grids, shown in Table 2. A 134

more accurate mass balance error is attained for the numerical solutions with DDM. 135

Table 2. Convergent mass balance error for with different grids

t2.1Grids Unknowns Error with DDM Error with single domain
t2.2Mesh1 720 36260 9.731×10−3 8.112×10−3

t2.3Mesh2 1440 58660 8.338×10−3 6.909×10−3

t2.4Mesh3 2880 115884 3.774×10−3 2.233×10−3

t2.5Mesh4 3600 139840 1.528×10−3 Overflow

4 Conclusions and Future Work 136

In this paper, a simplified single-phase 3D steady PEMFC model is introduced 137

by a modified Navier-Stokes equations for mass and momentum, and a conser- 138

vation equation for water concentration. Based on the combined finite element- 139

upwind finite volume methods and the overlapping domain decomposition method, 140

a new discretization scheme is designed and implemented for the PEMFC model. 141

Numerical experiments demonstrate that our methods are effective to deal with the 142

non-matching grids and obtain a relatively accurate numerical solution with low mass 143

balance error. The derived discretization scheme will be also studied for two-phase 144

unsteady and/or fuel cell stack model in our further work. 145
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