A Two-Level Additive Schwarz Preconditioner for C^0 ² Interior Penalty Methods for Cahn-Hilliard Equations ³

Kening Wang

University of North Florida, 1 UNF Drive, Jacksonville, FL 32224 kening.wang@unf.edu

Summary. We study a two-level additive Schwarz preconditioner for C^0 interior penalty 7 methods for a biharmonic problem with essential and natural boundary conditions with Cahn-Hilliard type. We show that the condition number of the preconditioned system is bounded 9 by $C(1 + (H^3/\delta^3))$, where *H* is the typical diameter of a subdomain, δ measures the overlap 10 among the subdomains, and the positive constant *C* is independent of the mesh sizes and the 11 number of subdomains.

1 Introduction

Let Ω be a bounded polygonal domain in \mathbb{R}^2 , and $\mathbb{V} = \{v \in H^2(\Omega) : \partial v / \partial n = 0 \text{ on } 14 \partial \Omega\}$, where $\partial / \partial n$ denotes the outward normal derivative. Consider the following 15 model problem which is the weak form of the biharmonic problem with boundary 16 conditions of Cahn-Hilliard type: 17

Find $u \in H^2(\Omega)$ such that

$$a(u,v) = (f,v) \quad \forall v \in \mathbb{V},$$
 (1)

$$\frac{\partial u}{\partial n} = 0 \qquad \text{on } \partial\Omega, \qquad (2)$$

where $f \in L_2(\Omega)$, (\cdot, \cdot) is the $L_2(\Omega)$ inner product, and

$$a(w,v) = \sum_{i,j=1}^{2} \int_{\Omega} \frac{\partial^2 w}{\partial x_i \partial x_j} \frac{\partial^2 v}{\partial x_i \partial x_j} dx$$
²⁰

is the inner product of the Hessian matrices of *w* and *v*.

Let p_* be a corner of Ω , and

$$\mathbb{V}^* = \{ v \in \mathbb{V} : v(p_*) = 0 \}.$$
 23

Then by elliptic regularity [1], the unique solution $u \in V^*$ of our model problem 24 belongs to $H^{2+\alpha}(\Omega)$, where $0 < \alpha \le 2$ is the index of elliptic regularity. 25

R. Bank et al. (eds.), *Domain Decomposition Methods in Science and Engineering XX*, Lecture Notes in Computational Science and Engineering 91, DOI 10.1007/978-3-642-35275-1_14, © Springer-Verlag Berlin Heidelberg 2013

Page 139

18

13

19

Ū

4

5

6

1

21

Kening Wang

 C^0 interior penalty methods are discontinuous Galerkin methods for fourth order 26 problems. These approaches for our model problem have recently been analyzed in 27 [5]. Let \mathscr{T}_h be a simplicial or convex quadrilateral triangulation of Ω , and V_h be a 28 Lagrange (triangular or tensor product) finite element space associated with \mathscr{T}_h . Let 29

$$V_h^* = \{ v \in V_h : v(p_*) = 0 \}.$$
 30

Then the C^0 interior penalty method for (1) and (2) is to find $u_h \in V_h^*$ such that 31

$$\mathscr{A}_h(u_h, v) = (f, v) \qquad \forall v \in V_h^*, \tag{3}$$

32

where for $w, v \in V_h^*$,

$$\mathcal{A}_{h}(w,v) = \sum_{D \in \mathcal{T}_{h}i, j=1}^{2} \int_{D} \frac{\partial^{2} w}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} dx + \sum_{e \in \mathcal{E}_{h}} \frac{\eta}{|e|} \int_{e} \left[\left[\frac{\partial w}{\partial n} \right] \right] \left[\left[\frac{\partial v}{\partial n} \right] \right] ds + \sum_{e \in \mathcal{E}_{h}} \int_{e} \left(\left\{ \left\{ \frac{\partial^{2} w}{\partial n^{2}} \right\} \right\} \left[\left[\frac{\partial v}{\partial n} \right] \right] + \left\{ \left\{ \frac{\partial^{2} v}{\partial n^{2}} \right\} \right\} \left[\left[\frac{\partial w}{\partial n} \right] \right] \right) ds,$$
(4)

 \mathcal{E}_h denotes the set of edges of the triangulation \mathcal{T}_h , and η is a penalty parameter. The 33 jumps and averages are defined as follows. 34

For interior edges $e \in \mathscr{E}_h$ shared by two elements $D_{\pm} \in \mathscr{T}_h$, we take n_e to be the $_{35}$ unit normal of e pointing from D_- into D_+ , and define $_{36}$

$$\left[\left[\frac{\partial v}{\partial n}\right]\right] = \frac{\partial v_+}{\partial n_e} - \frac{\partial v_-}{\partial n_e} \quad \text{and} \quad \left\{\left\{\frac{\partial^2 v}{\partial n^2}\right\}\right\} = \frac{1}{2} \left(\frac{\partial^2 v_+}{\partial n_e^2} + \frac{\partial^2 v_-}{\partial n_e^2}\right), \quad 37$$

where $v_{\pm} = v|_{D_{\pm}}$. Note that the definitions of $[\![\partial v/\partial n]\!]$ and $\{\!\{\partial^2 v/\partial n^2\}\!\}$ are inde- 38 pendent of the choice of *e*.

For $e \in \mathcal{E}_h$ which is on the boundary of Ω , we take n_e to be the unit normal of e_{40} pointing outside Ω and define 41

$$\left[\left[\frac{\partial v}{\partial n} \right] \right] = -\frac{\partial v}{\partial n_e} \quad \text{and} \quad \left\{ \left\{ \frac{\partial^2 v}{\partial n^2} \right\} \right\} = \frac{\partial^2 v}{\partial n_e^2}.$$

Remark 1. The discrete problem (3) resulting from the C^0 interior penalty method is 43 consistent, and for the penalty parameter η large enough, it is also stable [3]. 44

For fourth order problems, C^0 interior penalty methods have certain advantages ⁴⁵ over classical finite element methods. However, due to the nature of fourth order ⁴⁶ problems, the discrete system resulting from the C^0 interior penalty method is very ⁴⁷ ill-conditioned. Therefore, it is necessary to develop modern fast solvers to overcome ⁴⁸ this drawback. In this paper, we construct a two-level additive Schwarz precondi-⁴⁹ tioner and extend the results in [4] for biharmonic problems with essential Dirichlet ⁵⁰ boundary conditions to the ones with the essential and natural boundary conditions. ⁵¹

The rest of this paper is organized as follows. We first introduce the framework ⁵² of a two-level additive Schwarz preconditioner in Sect. 2, followed by the condition ⁵³ number estimates of the preconditioned system in Sect. 3. Section 4 demonstrates ⁵⁴ some numerical results. ⁵⁵

Page 140

2 A Two-Level Additive Schwarz Preconditioner

For simplicity, we will focus on the case where \mathscr{T}_h is a rectangular mesh. The results 57 obtained in this paper are also true for triangular and general convex quadrilateral 58 meshes. 59

Let $V_h^* = \{v : v \in C(\bar{\Omega}), v(p_*) = 0, v_D = v |_D = \mathbb{Q}_2(D) \ \forall D \in \mathscr{T}_h\}$ be the standard 60 quadratic Lagrange finite element space associated with \mathscr{T}_h , and the operator A_h : 61 $V_h^* \longrightarrow V_h^{*'}$ can then be defined by 62

$$\langle A_h v, w \rangle = \mathscr{A}_h(v, w) \qquad \forall v, w \in V_h^*,$$

where $\langle \cdot, \cdot \rangle$ is the canonical bilinear form between a vector space and its dual. Note that for η sufficiently large, the following relation [3] is true.

$$C_1|v|^2_{H^2(\Omega,\mathscr{T}_h)} \leq \langle A_h v, v \rangle \leq C_2|v|^2_{H^2(\Omega,\mathscr{T}_h)} \qquad \forall v \in V_h^*,$$

where

$$v|_{H^{2}(\Omega,\mathscr{T}_{h})}^{2} = \sum_{D \in \mathscr{T}_{h}} |v|_{H^{2}(D)}^{2} + \sum_{e \in \mathscr{E}_{h}} \frac{1}{|e|} \| [\![\partial v / \partial n]\!] \|_{L_{2}(e)}^{2},$$

and the constants C_1 and C_2 depend only on the shape regularity of \mathcal{T}_h .

We now construct a two-level additive Schwarz preconditioner for the operator $_{67}$ A_h which involves a coarse grid solve and subdomain solves. $_{68}$

First of all, let \mathscr{T}_H be a coarse rectangular mesh for Ω , and $V_0 \subset H^1(\Omega)$ be the 69 \mathbb{Q}_1 finite element space associated with \mathscr{T}_H . We define $A_0 : V_0^* \longrightarrow V_0^{*'}$ by 70

$$\langle A_0 v, w \rangle = \mathscr{A}_H(v, w) \qquad \forall v, w \in V_0^*,$$

where \mathscr{A}_H is the analog of \mathscr{A}_h for the coarse grid \mathscr{T}_H , and $V_0^* = \{v : v \in V_0, v(p_*) = 71 0\}$.

Let $\Omega_j, 1 \leq j \leq J$, be overlapping subdomains of Ω such that $\Omega = \bigcup_{j=1}^{J} \Omega_j$, and 73 the boundaries of Ω_j are aligned with the edges of \mathscr{T}_h . We assume that there exist 74 nonnegative $\theta_j \in C^{\infty}(\bar{\Omega})$ for $1 \leq j \leq J$ such that 75

$$egin{aligned} & heta_j = 0 & ext{on} \quad \Omega ackslash \Omega_j, \ &\sum_{j=1}^J heta_j = 1 & ext{on} \quad ar{\Omega}, \ &\|
abla heta_j \|_{L_{\infty}(\Omega)} \leq rac{C}{\delta}, & \|
abla^2 heta_j \|_{L_{\infty}(\Omega)} \leq rac{C}{\delta^2} \end{aligned}$$

where $\nabla^2 \theta_j$ is the Hessian of θ_j , $\delta > 0$ measures the overlap among the subdomains, ⁷⁶ and *C* is a positive constant independent of *h*, *H* and *J*. ⁷⁷

Remark 2. Suppose \mathscr{T}_h is a refinement of \mathscr{T}_H . We can construct Ω_j by enlarging the 78 elements of \mathscr{T}_H by the amount of δ so that the boundaries of $\Omega_j, 1 \leq j \leq J$, are 79 aligned with the edges of \mathscr{T}_h (cf. Fig. 1). The construction of $\theta_j, 1 \leq j \leq J$, is then 80 standard.

Page 141

65

Kening Wang

Fig. 1. $\mathcal{T}_h, \mathcal{T}_H$ and Ω_j

Moreover, we assume that the maximum number of subdomains Ω_j that share a second common point is bounded by a constant N_c .

Let $V_j = \{v : v \in V_h^*, v = 0 \text{ on } \bar{\Omega}_\ell \text{ if } \ell \neq j\}$ be the \mathbb{Q}_2 finite element space associated with \mathcal{T}_h on $\bar{\Omega}_j$. Then we define the operator $A_j : V_j \longrightarrow V'_j$ by 85

$$\langle A_j v, w \rangle = \mathscr{A}_j(v, w) \qquad \forall v, w \in V_j,$$

where $\mathscr{A}_{j}, 1 \leq j \leq J$, are the analogs of \mathscr{A}_{h} restricted on $\overline{\Omega}_{j}$. Similarly, we obtain that

$$C_{3}|v|^{2}_{H^{2}(\Omega_{j},\mathscr{T}_{h})} \leq \langle A_{j}v,v\rangle \leq C_{4}|v|^{2}_{H^{2}(\Omega_{j},\mathscr{T}_{h})} \qquad \forall v \in V_{j},$$

where

 $|v|_{H^2(\Omega_j,\mathcal{T}_h)}^2 = \sum_{\substack{D \in \mathcal{T}_h \\ D \subset \Omega_j}} |v|_{H^2(D)}^2 + \sum_{\substack{e \in \mathcal{E}_h \\ e \subset \Omega_j}} \| [\![\partial v/\partial n]\!] \|_{L_2(e)}^2,$

and C_3, C_4 are constants independent of h, H, J, N_c and δ .

For simplicity, from now on, we will use *C* to denote a generic positive constant ⁹⁰ independent of h, H, δ , and *J* that will take different values in different occurrences. ⁹¹

The subdomain finite element space V_j , $1 \le j \le J$, is connected to V_h^* by the $_{92}$ natural injection operator I_j which satisfies the following inequality. $_{93}$

 $|I_j v|_{H^2(\Omega, \mathscr{T}_h)} \leq C |v|_{H^2(\Omega_j, \mathscr{T}_h)} \qquad \forall v \in V_j.$

Furthermore, the coarse space V_0^* and the fine space V_h^* are connected by the 94 operator I_0 which is defined as follows. 95

Let $\tilde{V}_0 \subset H^2(\Omega)$ be the \mathbb{Q}_3 Bogner-Fox-Schmit finite element space associated 96 with \mathscr{T}_H , and $\tilde{V}_0^* = \{v : v \in \tilde{V}_0, v(p_*) = 0\}$. The \mathbb{Q}_1 Lagrange element and the \mathbb{Q}_3 97 Bogner-Fox-Schmit element are depicted in Fig. 2, where we use the solid dot • to 98 denote pointwise evaluation of the shape functions, the circle \circ and the arrow \mathbb{P} to 99 denote pointwise evaluation of all the first order derivatives and the mixed second 100 order derivative of the shape functions, respectively.

Fig. 2. \mathbb{Q}_1 element and \mathbb{Q}_3 Bogner-Fox-Schmit element

Page 142

We define $E_H: V_0^* \longrightarrow \tilde{V}_0^*$ to be the operator that for all $p \in \mathscr{T}_H$,

$$\begin{split} (E_H v)(p) &= v(p), \\ \nabla(E_H v)(p) &= \begin{cases} \frac{1}{|\mathscr{T}_p|} \sum_{D \in \mathscr{T}_p} \nabla v_D(p), & \text{ if } p \in \Omega, \\ 0, & \text{ if } p \in \partial \Omega, \end{cases} \\ \frac{\partial^2(E_H v)}{\partial x_1 \partial x_2}(p) &= \begin{cases} \frac{1}{|\mathscr{T}_p|} \sum_{D \in \mathscr{T}_p} \frac{\partial^2 v_D}{\partial x_1 \partial x_2}(p), & \text{ if } p \in \Omega, \\ 0, & \text{ if } p \in \partial \Omega, \end{cases} \end{split}$$

where \mathscr{T}_p is the set of rectangles in \mathscr{T}_H sharing p as a vertex, $|\mathscr{T}_p|$ is the number of 103 elements in \mathscr{T}_p , and $v_p = v|_p$.

Then for all $v \in V_0^*$, we take $I_0 v \in V_h^*$ to be the one whose nodal values are 105 identical with the corresponding nodal values of $E_H v$.

Remark 3. Instead of using the operator E_H , if we define the operator I_0 as the natural 107 injection operator from V_0^* to V_h^* , then the performance of the preconditioner will be 108 affected by the different scalings that appear in the penalty terms for \mathscr{A}_h and \mathscr{A}_H . 109 However, this problems can be avoided by defining I_0 as above since $E_H v \in H^2(\Omega)$. 110

We can now define the two-level additive Schwarz preconditioner $B: V_h^{*'} \longrightarrow V_h^{*}$ 111 by 112

$$B = \sum_{j=0}^J I_j A_j^{-1} I_j^t,$$

where $I_j^t : V_h^{*'} \longrightarrow V_j'$ is the transpose of I_j , i.e., $\langle I_j^t \Psi, v \rangle = \langle \Psi, I_j v \rangle \qquad \forall \Psi \in V_h^{*'}, v \in V_j.$

From the additive Schwarz theory [2, 6], the preconditioner *B* is symmetric positive definite and therefore the eigenvalues of BA_h are positive. Moreover, the maximum and minimum eigenvalues of BA_h are given by the following formulas, which will be used to estimate the condition number of the preconditioned system.

$$\begin{split} \lambda_{\max}(BA_h) &= \max_{\substack{\nu \in V_h \\ \nu \neq 0}} \frac{\langle A_h \nu, \nu \rangle}{\min_{\substack{\nu = \sum_{j=0}^J I_j \nu_j}} \sum_{j=0}^J \langle A_j \nu_j, \nu_j \rangle}, \\ \lambda_{\min}(BA_h) &= \min_{\substack{\nu \in V_h \\ \nu \neq 0}} \frac{\langle A_h \nu, \nu \rangle}{\min_{\substack{\nu \in V_j \\ \nu \neq 0}} \sum_{\substack{j=0 \\ \nu_j \in V_j}} I_j \nu_j \sum_{j=0}^J \langle A_j \nu_j, \nu_j \rangle}. \end{split}$$

Page 143

101 102

3 Condition Number Estimates

From the construction of our two-level additive Schwarz preconditioner, by the sim- 119 ilar arguments as we did in [4], it is not difficult to derive the following results on the 120 estimates of the eigenvalues of the preconditioned system. 121

Theorem 1. The following upper bound for the eigenvalues of BA_h holds:

$$\lambda_{\max}(BA_h) \leq C$$

where the positive constant C depends on the shape regularity of \mathcal{T}_{h} and \mathcal{T}_{H} but not 123 h, H, δ nor J. 124

Theorem 2. The following lower bound for the eigenvalues of BA_h holds:

$$\lambda_{\min}(BA_h) \ge C\left(1+\frac{H^4}{\delta^4}\right),$$

where the positive constant C depends on the shape regularity of \mathcal{T}_h and \mathcal{T}_H but not 126 h, H, δ nor J. 127

Finally, from Theorems 1 and 2, the following estimate on the condition number of 128 the preconditioned system can be obtained immediately. 129

Theorem 3. It holds that

 $\kappa(BA_h) = \frac{\lambda_{\max}(BA_h)}{\lambda_{\min}(BA_h)} \le C\left(1 + \frac{H^4}{\delta^4}\right),$

where the positive constant C depends on the shape regularity of \mathscr{T}_h and \mathscr{T}_H but not 131 h, H, δ nor J. 132

Remark 4. In the case of a small overlap, i.e. $\delta \ll H$, the estimate on the condition 133 number of the preconditioned system can be improved to $(1 + (H/\delta)^3)$, provided 134 with more assumptions on the subdomains Ω_i [4]. 135

4 Numerical Results

In this section, we present some numerical results for the biharmonic problem with 137 Cahn-Hilliard type of boundary conditions on the unit square. We choose the penalty 138 parameter in $\mathcal{A}_h, \mathcal{A}_H$ and \mathcal{A}_i to be 5, which guarantees the coerciveness of the vari- 139 ational form (4) on V_h^* . 140

First of all, for different choices of H and h, we generate a vector $v_h \in V_h^*$, com- 141 pute the right-hand side vector $g = A_h v_h$, and apply the preconditioned conjugate 142 gradient algorithm to the system $A_{hz} = g$ using our two-level additive Schwarz pre- 143 conditioner. We compute the iteration numbers needed for reducing the energy norm 144 error by a factor of 10^{-6} for five random choices of v_h and then average them. The 145

Page 144

125

130

136

122

numbers are collected in Tables 1 and 2. Also, to illustrate the practical performance 146 of our preconditioner, such iteration numbers needed for reducing the energy norm 147 error by a factor of 10^{-2} with 16 subdomains are reported in Table 3. They show that 148 the bound for the condition number of BA_h is independent of h. 149

We also compute, in the case of 4 and 16 subdomains, the maximum eigenvalue, 150 the minimum eigenvalue, and the condition number of the preconditioned system for 151 the fine mesh $h = 2^{-6}$ and various overlaps among subdomains by using Lanczos 152 methods. The results are tabulated in Tables 4 and 5. They show that the maximum 153 eigenvalue is bounded and the minimum eigenvalue increases as the overlap among 154 subdomains decreases. 155

Table 1. Average number of iterations for reducing the energy norm error by a factor of 10^{-6} with H = 1/2 and J = 4

	$h = 2^{-2}$	$h = 2^{-3}$	$h = 2^{-4}$	$h = 2^{-5}$	$h = 2^{-6}$
$\delta = 2^{-2}$	17	17	17	15	15
$\delta = 2^{-3}$	-	20	20	19	17
$\delta = 2^{-4}$	-	-	26	25	24
$\delta = 2^{-5}$	-	- /	-	47	45
$\delta = 2^{-6}$	-	- (-	-	93
		\sim			

Table 2. Average number of iterations for reducing the energy norm error by a factor of 10^{-6} with H = 1/4 and J = 16

	$h = 2^{-3}$	$h = 2^{-4}$	$h = 2^{-5}$	$h = 2^{-6}$	t2
$\delta = 2^{-3}$	27	29	27	24	t2
$\delta = 2^{-4}$	-	28	26	24	t2
$\delta = 2^{-5}$	-	-	42	39	t2
$\delta=2^{-6}$	-	-	-	83	t2

156

Bibliography

[1]	H. Blum and R. Rannacher. On the boundary value problem of the biharmonic	157
	operator on domains with angular corners. Math. Methods Appl. Sci., 2:556-581,	158
	1980.	159
[0]	C.C. Dream on d.I. D. Soott, The Mathematical Theorem of Finite Flow and Math	

 [2] S.C. Brenner and L.R. Scott. *The Mathematical Theory of Finite Element Methods.* Springer-Verlag, New York, third edition, 2008.

Page 145

	$h = 2^{-3}$	$h = 2^{-4}$	$h = 2^{-5}$	$h = 2^{-6}$		
$\delta = 2^{-3}$	6	6	5	5		
$\delta = 2^{-4}$	-	5	5	4		t
$\delta = 2^{-5}$	-	-	5	4		t
$\delta = 2^{-6}$	-	-	-	5	\cap	t
-					★ /	

Table 3. Average number of iterations for reducing the energy norm error by a factor of 10^{-2} with H = 1/4 and J = 16

Table 4. $\lambda_{\max}(BA_h), \lambda_{\min}(BA_h)$ and $\kappa(BA_h)$ with $H = 1/2, h = 2^{-6}$ and J =

H/δ	$\lambda_{\max}(BA_h)$	$\lambda_{\min}(BA_h)$	$\kappa(BA_h)$
2	4.8394	0.4259	1.1363×10^{1}
4	4.8029	0.3045	1.5775×10^{1}
8	4.7526	0.1279	3.7149×10^{1}
16	4.6600	0.0247	1.8850×10^{2}
32	4.5849	0.0036	1.2895×10^{3}

Table 5. $\lambda_{\max}(BA_h), \lambda_{\min}(BA_h)$ and $\kappa(BA_h)$ with $H = 1/4, h = 2^{-6}$ and J = 16

H/δ	$\lambda_{\max}(BA_h)$	$\lambda_{\min}(BA_h)$	$\kappa(BA_h)$
2	6.5195	0.1811	3.5992×10^{1}
4	4.8740	0.1633	2.9852×10^{1}
8	4.6968	0.0631	7.4402×10^{1}
16	4.5865	0.0103	4.4698×10^{2}
()	·		

- [3] S.C. Brenner and L.-Y. Sung. C⁰ interior penalty methods for fourth order elliptic 162 boundary value problems on polygonal domains. *J. Sci. Comput.*, 22/23:83–118, 163 2005.
- [4] S.C. Brenner and K. Wang. Two-level additive Schwarz preconditioners for C⁰ 165 interior penalty methods. *Numer. Math.*, 102:231–255, 2005. 166
 - [5] S.C. Brenner, S. Gu, T. Gudi, and L.-Y. Sung. A C⁰ interior penalty method for 167 a biharmonic problem with essential and natural boundary conditions of Cahn-Hilliard type. 2010.
 - [6] M. Dryja and O.B. Widlund. An additive variant of the Schwarz alternating 170 method in the case of many subregions. Technical Report 339, Department of 171 Computer Science, Courant Institute, 1987.