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Summary. In this paper, we discuss a preconditioning technique for mixed finite element 13

discretizations of elliptic equations. The technique is based on a block-diagonal approximation 14

of the mass matrix which maintains the sparsity and positive definiteness of the corresponding 15

Schur complement. This preconditioner arises from the multipoint flux mixed finite element 16

method and is robust with respect to mesh size and is better conditioned for full permeability 17

tensors than a preconditioner based on a diagonal approximation of the mass matrix. 18

1 Introduction 19

Consider the mixed formulation of a second order linear elliptic equation. Introduc- 20

ing a flux variable, we solve for a scalar potential p and a vector function u that 21

satisfy 22

u =−K∇p in Ω , (1)

∇ ·u = f in Ω , (2)

p = 0 on ∂Ω , (3)

where Ω is a polygonal domain with Lipschitz continuous boundary and K is a 23

symmetric and uniformly positive definite tensor with L∞(Ω) components. Homo- 24

geneous Dirichlet boundary conditions are considered for the simplicity of the pre- 25

sentation. 26

Mixed finite element methods lead to the non-singular indefinite system: 27

M

(
U
P

)
:=

(
A B

T

B 0

)(
U
P

)
=

(
0
F

)
, (4)

where the matrix A is a symmetric and positive definite. 28
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In this paper, we consider preconditioners of the form: 29

M̃ :=

(
Ã B

T

B 0

)
. (5)

The applicability of this type preconditioner is due to the fact that 30

• Ã is easily invertible. 31

• The Schur complement of the preconditioner M̃ is sparse and positive definite, 32

and can be solved easily. 33

One way is choosing Ã as a diagonal matrix. In [1], Ã is given as ωI. The global 34

parameter ω is chosen to minimize the spectral radius of I− M̃
−1
M. In [5], the di- 35

agonal matrix is optimally scaled at element level and a precise upper bound of the 36

spectral radius has been shown: ρ(I− M̃
−1
M) ≤ 1/2. In other words, the precon- 37

ditioner is independent of both the mesh size and the tensor K. This uniformity is 38

derived when the problem has a diagonal K and is discretized by the lowest order 39

Raviart-Thomas [8] mixed finite element on rectangular grids. For other mixed fi- 40

nite element spaces or full tensor K, the uniformity result is not clearly understood. 41

Alternatively, a simple parameter-free choice for Ã, Ã= Diag(A), can be used. 42

Another approach is to take Ã as a block-diagonal matrix which guarantees that 43

the corresponding Schur complement matrix is sparse and positive definite. Multi- 44

point flux mixed finite element (MFMFE) methods [6, 9–12] give matrices of the 45

form (5), where the flux variable can be locally eliminated due to the block-diagonal 46

structure of Ã. The corresponding Schur complement gives a cell-centered stencil 47

for the scalar variable. In this paper, we study the performance of this MFMFE 48

operator as a preconditioner. The Schur complement of MFMFE has a 9-point 49

stencil on logically rectangular grids and with full tensor K in contrast to 5-point 50

stencil which arises if Ã is a diagonal matrix. Our numerical result indicates that 51

the MFMFE method gives a better preconditioner than the diagonal preconditioner 52

(Ã = Diag(A)). A natural extension of this work is the use of approximate precon- 53

ditioners based on algebraic multigrid for MFMFE as described in [2, 7] and will be 54

the subject of future work. 55

The rest of the paper is organized as follows. Mixed finite element formulation 56

is described in Sect. 2. A block type preconditioner is discussed in Sect. 3. Finally in 57

Sect. 4, numerical experiments are given. 58

2 Mixed Finite Element Formulation 59

Define H(div;Ω) :=
{

v ∈ (L2(Ω))d : ∇ ·v ∈ L2(Ω)
}

and let (·, ·) denote the inner 60

product in L2(Ω). Let X � (�) Y denote that there exists a constant C, independent 61

of the mesh size h, such that X ≤ (≥)CY . The notation X �Y means that both X �Y 62

and X � Y hold. 63

Let Th be a finite element partition of the domain Ω consisting of either triangles 64

or quadrilaterals. We assume that Th is shape-regular in the sense of Ciarlet [4]. 65
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The finite element spaces on any physical element E ∈ Th are defined via the Piola 66

transformation 67

v↔ v̂ : v̂ =
1
JE

DFE v̂◦F−1
E , 68

and the scalar transformation 69

w↔ ŵ : w = ŵ◦F−1
E , 70

where FE denotes a mapping from the reference element Ê to the physical element 71

E , DFE is the Jacobian of FE , and JE is its determinant. The finite element spaces Vh 72

and Wh on Th are given by 73

Vh =
{

v ∈H(div;Ω) : v|E ↔ v̂, v̂ ∈ V̂ (Ê), ∀E ∈ Th
}
,

Wh =
{

w ∈ L2(Ω) : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê), ∀E ∈Th
}
,

where V (Ê) and Ŵ (Ê) are the lowest order Brezzi-Douglas-Marini (BDM1) spaces 74

on the reference element Ê . Definitions of Piola transformation and BDM1 spaces 75

yield Vh ⊂ H(div;Ω) and Wh ⊂ L2(Ω). 76

The finite element method reads: find uh ∈Vh and ph ∈Wh, such that 77

(K−1uh,v)− (ph,∇ ·v) = 0, ∀v ∈Vh, (6)

−(∇ ·uh,w) =−( f ,w) ∀w ∈Wh. (7)

The method (6) and (7) can have a second order convergence for the flux and first 78

order convergence for the scalar potential [3] if u and p are sufficiently regular. 79

3 Preconditioning the Mixed Finite Element System 80

3.1 Multipoint Flux Mixed Finite Element 81

A family of multipoint flux mixed finite element (MFMFE) methods on various grids 82

has been developed and analyzed [6, 9–12]. The method is defined as: find uh ∈ Vh 83

and ph ∈Wh, such that 84

(K−1uh,v)Q− (ph,∇ ·v) = 0, ∀v ∈Vh, (8)

−(∇ ·uh,w) =−( f ,w) ∀w ∈Wh, (9)

where the finite element spaces are BDM1 on triangular and rectangular meshes. 85

Compared to the BDM1 finite element method, a specific numerical quadrature rule 86

is employed. It is defined as: 87

(K−1q,v)Q = ∑
E∈Th

(K−1q,v)Q,E ≡ ∑
E∈Th

Trap(K q̂, v̂)Ê , (10)

where K on each Ê is defined as 88
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K =
1
JE

DF
T
EK
−1(FE(x̂))DFE , (11)

and the trapezoidal rule on Ê is denoted as 89

Trap(q̂, v̂)Ê ≡
|Ê|
m

m

∑
i=1

q̂(r̂i) · v̂(r̂i), (12)

with {r̂i}m
i=1 being vertices of Ê and m being the number of vertices of Ê . 90

The degrees of freedom for the flux variable are chosen as the normal components 91

at two vertices on each edge. More specifically, denote the basis functions associated 92

with r̂i by v̂i j , j = 1,2: (v̂i j · n̂i j)(r̂i) = 1, (v̂i j · n̂ik)(r̂i) = 0,k 
= j, and (v̂i j · n̂lk)(r̂l) = 93

0, l 
= i, k = 1, 2. As a consequence, the quadrature rule (10) couples only the two 94

basis functions associated with a vertex. For example, on the unit square 95

(K v̂11, v̂11)Q̂,Ê =
K11(r̂1)

4
, (K v̂11, v̂12)Q̂,Ê =

K21(r̂1)

4
,

(K v̂11, v̂i j)Q̂,Ê = 0, i 
= 1, j = 1,2.
(13)

where Ki j denotes i-th row and j-th column of the matrix function K . This local- 96

ization property on interactions between the flux basis functions gives the assembled 97

mass matrix in (8) has a block diagonal structure with one block per grid vertex. 98

We denote the algebraic system arising from (8) and (9) as 99

(
AQ B

T

B 0

)(
U
P

)
=

(
0
F

)
, (14)

where AQ is block diagonal. The approximate flux, U , can be easily eliminated via 100

U =−A−1
Q B

T P. (15)

The resulting Schur complement system 101

BA
−1
Q B

T P =−F, (16)

is symmetric positive definite and sparse. On rectangular grids, Eq. (16) has a 102

5-point stencil for a diagonal tensor K and 9-point stencil for the full tensor. The 103

Schur complement system can be solved using classical algebraic multigrid methods. 104

The flux variable is then obtained easily by (15) due to the block diagonal structure 105

of AQ. 106

The following result concerns the convergence of the MFMFE methods. Let W k,∞
Th

107

consist of functions φ such that φ |E ∈W k,∞(E) for all E ∈ Th. 108

Theorem 1 ([6, 10–12]). Let Th consist of simplices, h2-parallelograms, h2-parallel- 109

epipeds or triangular prisms. If K−1 ∈W 1,∞
Th

, then, the flux uh and scalar ph of the 110

MFMFE method (8)–(9) satisfies 111

‖u−uh‖� h‖u‖1, ‖∇ · (u−uh)‖� h‖∇ ·u‖1, ‖p− ph‖� h(‖u‖1 + ‖p‖1).
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Compared to the second order L2 convergence of the flux variable in the BDM1 112

mixed method, the MFMFE has a first order convergence for the flux variable due to 113

the numerical quadrature. However the MFMFE method is a solver friendly scheme 114

since the MFMFE method can be reduced to a cell-centered stencil in terms of the 115

scalar variable without solving a saddle-point problem. 116

3.2 Multipoint Flux Mixed Finite Element as a Preconditioner 117

The MFMFE method may be used as a preconditioner to the BDM1 mixed finite 118

element method by choosing Ã= AQ. 119

Lemma 1. The condition number of Ã−1
A is independent of the mesh size. 120

Proof. It has been shown [6, 11, 12] that the bilinear form (K−1·, ·)Q is an inner 121

product in Vh and (K−1q,q)1/2
Q is a norm equivalent to the L2 norm. Thus 122

(K−1q,q)Q � ‖q‖2
� (K−1q,q), ∀q ∈ Vh. � (17)

The preconditioner of the form (5) has been analyzed by Ewing, Lazarov, Lu and 123

Vassilevski. 124

Theorem 2 ([5]). The eigenvalues of M̃−1
M are real and positive and lie in the 125

interval [λmin,λmax], where λmin and λmax are the extreme eigenvalues of Ã−1
A. 126

By Lemma 1 and Theorem 2, we have the following corollary. 127

Corollary 1. The preconditioned system of BDM1 mixed finite element method with 128

MFMFE as a preconditioner is positive definite. The condition number is indepen- 129

dent of the mesh size. 130

4 Numerical Results 131

4.1 Example 1 132

In this example, we consider (1)–(3) on the computational domain shown in Fig. 1 133

(left) with p = 0 on ∂Ω and f = 1. 134

First, we use the MFMFE method as a preconditioner for the BDM1 mixed finite 135

element method with K = I. The result is presented in Table 1 where we can clearly 136

see that the preconditioner is robust with respect to the mesh size h. Next, we consider 137

the heterogeneous permeability field shown in Fig. 1 (right) which is generated using 138

geostatistical techniques (kriging) with a longer correlation length in the horizontal 139

direction. In Table 2 we see that the preconditioner is not only robust with respect to 140

mesh size, but also with respect to the heterogeneities in the permeability. 141
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Fig. 1. The triangular mesh used in Example 1 with h ≈ 1/16 (left) and the log of the hetero-
geneous permeability field (right)
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h Degrees of Freedom cond(M̃−1
M)

1/8 512 13.43
1/16 2048 15.84
1/32 8192 15.61
1/64 32768 15.63

Table 1. Performance of the MFMFE preconditioner with a homogeneous permeability field.

h Degrees of Freedom cond(M̃−1
M)

1/8 512 20.07
1/16 2048 21.61
1/32 8192 16.61
1/64 32768 14.27

Table 2. Performance of the MFMFE preconditioner with a heterogeneous permeability field.

4.2 Example 2 142

In this example, we consider (1)–(3) with Ω = [0,1]× [0,1] and 143

K=

(
1+α 1−α
1−α 1+α

)
, 144

with 0 < α ≤ 1. We use uniform rectangular meshes and our objective is to demon- 145

strate that the MFMFE preconditioner is more robust as α → 0. In Tables 3 and 146

4 we present the results using the diagonal preconditioner (Ã = Diag(A)) and the 147

MFMFE preconditioner respectively. We see that both preconditioners are robust 148

with respect to h, but degrade as α → 0, but the MFMFE preconditioner degrades at 149

a much slower rate. 150
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α h = 1/4 h = 1/8 h = 1/16 h = 1/32
1 22.43 22.32 22.32 22.32

1E-1 1.06E2 9.95E2 1.06E2 1.06E2
1E-2 7.00E2 6.97E2 6.97E2 6.97E2
1E-3 9.51E3 9.41E3 9.75E3 8.42E3

Table 3. Performance of a diagonal preconditioner with respect to h and α .

α h = 1/4 h = 1/8 h = 1/16 h = 1/32
1 22.42 22.32 22.32 22.32

1E-1 32.07 32.09 32.26 32.09
1E-2 51.01 50.06 50.39 50.39
1E-3 5.20E2 6.96E2 8.10E2 8.21E2

Table 4. Performance of the MFMFE preconditioner with respect to h and α .

5 Conclusions 151

The purpose of this paper is to investigate the performance of the multipoint flux 152

mixed finite element as a preconditioner for the saddle-point system for the full 153

BDM1 mixed finite element approximation. Numerical results indicate that the 154

MFMFE preconditioner is robust with respect to the mesh size and performs bet- 155

ter than the preconditioner based on the diagonal mass matrix. 156
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