
Page 703

UN
CO

RR
EC

TE
D

PR
O
O
F

1

A Parallel Monolithic Domain Decomposition Method 2

for Blood Flow Simulations in 3D 3

Yuqi Wu1 and Xiao-Chuan Cai2 4

1 Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 5

80309, USA, yuqi.wu@colorado.edu 6
2 Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, 7

USA, cai@cs.colorado.edu 8

Summary. We develop a parallel scalable domain decomposition method for the simulation 9

of blood flows in compliant arteries in 3D, by using a fully coupled system of linear elasticity 10

equation and incompressible Navier-Stokes equations. The system is discretized with a finite 11

element method on unstructured moving meshes and solved by a Newton-Krylov algorithm 12

preconditioned with an overlapping additive Schwarz method. We focus on the accuracy and 13

parallel scalability of the algorithm, and report the parallel performance and robustness of the 14

proposed approach by some numerical experiments carried out on a supercomputer with a 15

large number of processors and for problems with millions of unknowns. 16

1 Introduction 17

Computer modeling of fluid-structure interaction (FSI) is a useful tool for the study 18

of hemodynamics of blood flows in human arteries. Accurate modeling helps the pre- 19

diction and treatment of, for example, vascular diseases. FSI problems are in general 20

difficult to study. One of the main challenges is the effective coupling of the fluid 21

and the structure. Two well-known formulations are iterative and monolithic. In iter- 22

ative approaches, the fluid and the structure equations are solved one after the other 23

repeatedly, until some desired tolerance is reached [7, 10]. The convergence of these 24

approaches is difficult to achieve in some situations [6], since the approaches are very 25

similar to nonlinear Gauss-Seidel with two large blocks. In contrast, we develop a 26

monolithic coupling similar to [2–4], where the fluid and the structure equations are 27

solved simultaneously in a fully coupled fashion and the coupling conditions are en- 28

forced strongly as part of the system. The monolithic approach has been shown to 29

be more robust. Many of the convergence problems encountered within the iterative 30

approaches can be avoided. 31

With the rapid advancement in high performance computing technologies, high 32

resolution blood flow simulations are expected to provide more details of the physics 33

of blood flows and the artery walls. To obtain highly accurate solutions on a very fine 34

mesh, the parallel performance and scalability of the solution algorithm is becoming 35
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a key issue in the simulation. In [2, 3], a class of parallel scalable Newton-Krylov- 36

Schwarz method was introduced for FSI in 2D. In this paper, we focus on solving 37

the fully coupled FSI system in 3D and also discuss the parallel performance and 38

robustness of the algorithms. The rest of the paper is organized as follows. In Sect. 2, 39

we describe the formulation and the discretization of the fully coupled FSI prob- 40

lem. In Sect. 3, we present the Newton-Krylov-Schwarz method for solving the fully 41

coupled nonlinear system. In Sect. 4, we first validate the method by comparing so- 42

lutions obtained with the new approach with published results for a straight cylinder 43

problem, then report the parallel performance of the algorithm. Finally, we provide 44

some concluding remarks in Sect. 5. 45

2 Mathematical Formulation and Discretization 46

Our fully coupled approach can be described by the coupling of three components, 47

the linear elasticity equation for the wall structure in the reference Lagrangian frame, 48

the incompressible Navier-Stokes equations for the fluid in the arbitrary Lagrangian- 49

Eulerian (ALE) framework, and the Laplace equation for the displacement of the 50

fluid domain. 51

Let Ωs ∈ R3 be the structure domain. The displacement xs of the artery walls is 52

described by 53

ρs
∂ 2xs

∂ t2 −∇ ·σs = fs in Ωs, (1)

where ρs is the density of the structure, and σs = λs(∇ · xs)I + μs(∇xs + ∇xs
T ) 54

is the Cauchy stress tensor. The Lamé parameters λs and μs are related to the 55

Young’s modulus E and the Poisson ratio νs by λs = νsE/((1+ νs)(1− 2νs)) and 56

μs = E/(2(1+νs)). We fix the structure displacement xs = 0 on the inlet and outlet 57

boundary Γs, and apply the zero normal traction condition σs ·n = 0 on the external 58

boundaries. 59

In order to model the fluid in a moving domain Ω f (t) ∈ R3, the displacement of 60

the fluid domain x f in the reference configuration Ω0 ∈ R3 is assumed to satisfy a 61

Laplace equation, 62

Δx f = 0 in Ω0.

We define an ALE mapping At from Ω0 to Ω f (t): 63

At : Ω0→Ω f (t), At(Y) = Y+ xf(Y), ∀Y ∈Ω0,

where Y is referred to as the ALE coordinates. The incompressible Navier-Stokes 64

equations defined on the moving domain Ω f (t) are written in the ALE form as 65

ρ f
∂u f

∂ t

∣∣∣∣
Y
+ρ f [(u f −ωg) ·∇]u f = ∇ ·σ f in Ω f (t),

∇ ·u f = 0 in Ω f (t),
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where ρ f is the fluid density, u f is the fluid velocity, and σ f = −p f I + μ f (∇uf + 66

∇uf
T ) is the Cauchy stress tensor. ωg = ∂xf/∂ t is the velocity of the moving domain 67

and Y indicates that the time derivative is taken with respect to the ALE coordi- 68

nates. On the inlet boundary Γi, a given velocity profile is prescribed. On the outlet 69

boundary Γo, the zero traction condition σ f ·n = 0 is considered, where n is the unit 70

outward normal. These boundary conditions may be chosen differently, depending 71

on the problem at hand. 72

More importantly, three coupling conditions are strongly enforced on the fluid- 73

structure interface Γw 74

σs ·ns =−σ f ·n f , uf =
∂xs

∂ t
, x f = xs, (2)

where ns, n f are unit normal vectors on the fluid-structure interface. 75

By introducing the structure velocity ẋs as an additional unknown variable, we 76

can rewrite the structure momentum equation (1) as a first-order system of equations. 77

We define the variational space of the structure problem as 78

X =
{

xs ∈ [H1(Ωs)]
3 : xs = 0 on Γs

}
. 79

The weak form of the structure problem is stated as follows: Find xs ∈ X and ẋs ∈ X 80

such that ∀φs ∈ X and ∀ϕs ∈ X , 81

Bs({xs, ẋs},{φs,ϕs};σ f ) = ρs
∂
∂ t

∫
Ωs

ẋs ·φs dΩ +
∫

Ωs

∇φs : σs dΩ

−
∫

Γw

φs ·
(
σ f ·ns

)
ds−

∫
Ωs

fs ·φs dΩ +

∫
Ωs

(
∂xs

∂ t
− ẋs

)
·ϕs dΩ = 0.

The variational spaces of the fluid subproblem are time dependent, and the so- 82

lution of the structure subproblem provides an essential boundary condition for the 83

fluid subproblem by (2). We define the trial and weighting function spaces as: 84

V =
{

u f ∈ [H1(Ω f (t))]
3 : u f = g on Γi,u f = ∂xs/∂ t on Γw

}
,

V0 =
{

u f ∈ [H1(Ω f (t))]
3 : u f = 0 on Γi∪Γw

}
,

P = L2 (Ω f (t)
)
.

The weak form of the fluid problem reads: Find u f ∈V and p f ∈P such that ∀φ f ∈V0 85

and ∀ψ f ∈ P, 86

B f ({u f ,p f },{φ f ,ψ f };x f ) = ρ f

∫
Ω f (t)

∂u f

∂ t

∣∣∣∣
Y
·φ f dΩ −

∫
Ω f (t)

p f (∇ ·φ f ) dΩ

+ρ f

∫
Ω f (t)

[
(u f −ωg) ·∇

]
u f ·φ f dΩ + 2μ f

∫
Ω f (t)

ε(u f ) : ε(φ f ) dΩ

+

∫
Ω f (t)

(∇ ·u f )ψ f dΩ = 0,
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where ε(u f ) = (∇u f +∇uT
f )/2. 87

The weak form of the domain movement problem reads: Find x f ∈ Z such that 88

∀ξ ∈ Z0, 89

Bm(x f ,ξ ) =
∫

Ω0

∇ξ : ∇x f dΩ = 0.

And the variational spaces are defined as 90

Z0 = {x f ∈ [H1(Ω0)]
3 : x f = 0 on Γi∪Γo∪Γw},

Z = {x f ∈ [H1(Ω0)]
3 : x f = xs on Γw,x f = 0 on Γi∪Γo}.

We discretize the fully coupled problem in space with a finite element method, 91

by using unstructured P1-P1 stabilized elements for the fluid, P1 elements for the 92

structure and P1 elements for the fluid domain motion. We denote the finite element 93

subspaces Xh, Vh, Vh,0, Ph, Zh, Zh,0 as the counterparts of their infinite dimensional 94

subspaces. Because the fluid problem requires that the pair Vh and Ph satisfy the LBB 95

inf-sup condition, additional SUPG stabilization terms are needed in the formulation 96

with equal-order interpolation of the velocity and the pressure as described in [11, 97

12]. The semi-discrete stabilized finite element formulation for the fluid problem 98

reads as follows: Find u f ∈Vh and p f ∈ Ph, such that ∀φ f ∈Vh,0 and ∀ψ f ∈ Ph, 99

B
({

u f , p f
}
,
{

φ f ,ψ f
}

;x f
)
= 0,

with 100

B
({

u f , p f
}
,
{

φ f ,ψ f
}

;x f
)

= B f
({

u f , p f
}
,
{

φ f ,ψ f
}

;x f
)
+ ∑

K∈T h
f

(
∇ ·u f ,τc∇ ·φ f

)
K

+ ∑
K∈T h

f

(
∂u f

∂ t

∣∣∣∣
Y
+(u f −ωg) ·∇u f +∇p f ,τm

(
(u f −ωg) ·∇φ f +∇ψ f

))
K

,

where T h
f = {K} is the given unstructured tetrahedral fluid mesh, and τc and τm are 101

stabilization parameters. 102

We form the finite dimensional fully coupled FSI problem as follows: Find xs ∈ 103

Xh, ẋs ∈ Xh, u f ∈ Vh, p f ∈ Ph and x f ∈ Zh such that ∀φs ∈ Xh, ∀ϕs ∈ Xh, ∀φ f ∈ Vh,0, 104

∀ψ f ∈ Ph, and ∀ξ ∈ Zh,0, 105

Bs({xs, ẋs},{φs,ϕs};σ f )+B({u f , p f },{φ f ,ψ f };x f )+Bm(x f ,ξ ) = 0. (3)

The system (3) is further discretized in time with a second-order BDF2 scheme. 106

Since the temporal discretization scheme is fully implicit, at each time step, we ob- 107

tain the solution xn at the nth time step from the previous two time steps by solving 108

a sparse, nonlinear algebraic system 109

Fn(x
n) = 0, (4)
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where xn corresponds to the nodal values of the fluid velocity u f , the fluid pressure 110

p f , the fluid mesh displacement x f , the structure displacement xs and the structure 111

velocity ẋs at the nth time step. For simplicity, we ignore the script n for the rest of 112

the paper. 113

3 Newton-Krylov-Schwarz Method 114

In the Newton-Krylov-Schwarz approach, the nonlinear system (4) is solved via the 115

inexact Newton method [8]. At each Newton step the new solution x(k+1) is obtained 116

from the current solution x(k) by x(k+1) = x(k) +θ (k)s(k), where the step length θ (k) is 117

determined by a cubic line search technique. The Newton correction s(k) is approxi- 118

mated by solving a preconditioned Jacobian system JkM−1
k Mks(k) = −F (x(k)) with 119

GMRES, where M−1
k is a one-level restricted additive Schwarz preconditioner [5]. 120

To define the domain decomposition preconditioner, we first partition the finite 121

element mesh (which consists of the meshes for all components of the coupled sys- 122

tem) into non-overlapping subdomains Ω h
� , � = 1, . . . ,N, where the number of sub- 123

domain N is always the same as the number of processors np. Then, each subdomain 124

Ω h
� is extended to an overlapping subdomain Ω h,δ

� . Note that the decomposition of 125

the mesh is completely independent of which physical variables are defined on a 126

given mesh point. The number of variables at a given mesh point is considered for 127

the purpose of load balancing. The so-called one-level restricted additive Schwarz 128

preconditioner is defined by 129

M−1
k =

N

∑
�=1

(R0
�)

T J−1
� R�,

where R0
� and R� are restrictions to the degrees of freedom in the non-overlapping 130

subdomain Ω h
� and the overlapping subdomain Ω h,δ

� , respectively. J� is a restriction 131

of the Jacobian matrix defined by J� = R�JkRT
� . 132

4 Numerical Results 133

Our algorithm is implemented using PETSc [1]. All computations are performed on 134

an IBM BlueGene/L supercomputer. 135

A benchmark 3D FSI problem is used to study the efficiency and performance 136

of our fully-coupled algorithm and software. The geometry consists of a straight 137

cylinder representing the fluid domain with length 5 cm and radius 0.5 cm, and 138

the surrounding structure with thickness 0.1 cm. A constant traction σ f ·n = 1.33 · 139

104 dynes/cm2 is imposed on the inlet boundary for 3 ms. A zero traction con- 140

dition is applied to the fluid at the outlet boundary. The fluid is characterized 141

with viscosity μ f = 0.03 poise, and density ρ f = 1.0 g/cm3. The Young’s mod- 142

ulus E = 3 · 106 g/(cm s2), the Poisson ratio νs = 0.3, and the structure density 143

ρs = 1.2 g/cm3 are the parameters of the structure model. 144
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The fluid and the structure are initially at rest and the simulation is run on a 145

mesh with 2.41 · 106 elements and 3.08 · 106 degrees of freedom, for a total time of 146

10 ms with a time step size Δ t = 0.1 ms. The simulation proceeds to the next time 147

step when the residual of the nonlinear system is less than 10−6. In Fig. 1, we show 148

the computed fluid pressure and the structure deformation at t = 2.5, 5.0, 10.0 ms. Our 149

results are similar to the published results in [7, 9]. We observe that the pressure wave 150

propagates along the cylinder and reaches the end of the cylinder at t = 10.0 ms. The 151

wall structure deforms in response to the propagation of the wall pressure, which is 152

a key feature of the fluid-structure interaction. 153

The strong scalability of the algorithm is presented in Table 1. The results show 154

superlinear scalability for a range of problem sizes and with up to 2,048 processors. It 155

is worth noting that the growth in GMRES iterations for large processor counts may 156

be a problem if we consider to solve the problem on a much larger mesh and with 157

a larger number of processors. In those situations, one possible solution to improve 158

the scalability is the use of a multilevel preconditioner. 159

Our algorithm is quite robust with respect to physical parameters. In some FSI 160

methods, the convergence becomes difficult to achieve if the density of the fluid and 161

the structure are close to each other. According to Table 2, our solver performs quite 162

well for a wide range of fluid density and structure density. 163

Fig. 1. Pressure wave propagation and structure deformation. The deformation is amplified by
a factor of 12 for visualization purpose only
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DOF np Newton GMRES time (s)
256 2.0 41.60 218.03

1.24 ·106 512 2.0 49.85 87.53
1024 2.0 55.65 37.88
512 2.0 57.60 442.44

3.07 ·106 1024 2.0 67.15 152.16
2048 2.0 77.55 65.64

Table 1. Performance with respect to the number of processors for two different mesh sizes.
“np” denotes the number of processors. “Newton” denotes the average Newton iteration per
time step. “GMRES” denotes the average GMRES iterations per Newton step. “time” refers
to the average compute time, in seconds, per time step.

ρ f ρs Newton GMRES time (s)
1.0 0.1 2.0 71.65 89.94
1.0 1.0 2.0 49.85 87.53
1.0 10.0 2.0 53.90 88.07
1.0 100.0 2.0 61.75 88.84
0.01 1.0 2.0 124.60 96.75
0.1 1.0 2.0 60.90 88.77
10.0 1.0 2.0 60.85 88.79

Table 2. Different combinations of fluid density ρ f and structure density ρs. μ f is kept at 0.03
poise. The tests are run for a problem with 1.25 ·106 unknowns and 512 processors.

5 Conclusion 164

In this paper, we developed and studied a parallel scalable overlapping Schwarz do- 165

main decomposition method for solving the fully coupled fluid-structure interaction 166

system in 3D. Our algorithm is shown to be scalable on a large scale supercomputer 167

and robust with respect to several important physical parameters. 168
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