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Summary. The distributed control of unsteady incompressible flows has been the focus of 9

intense research in scientific computing in the past few years. Most of the existing approaches 10

for distributed control problems are based on the so-called reduced space method which is 11

easier to implement but may have convergence issues in some situations. In this paper we 12

investigate some fully coupled parallel two-grid Lagrange-Newton-Krylov-Schwarz (LNKSz) 13

algorithms for the implicit solution of distributed control problems. In the full space approach 14

we couple the control variables, the state variables and the adjoint variables in a single large 15

system of nonlinear equations. Numerical experiments are presented to show the efficiency 16

and scalability of the algorithm on supercomputers with more than one thousand processors. 17

1 Introduction 18

Flow optimal control problems have many important applications in science and eng- 19

ineering and many attempts have been made in the past few years to mathematically 20

understand and numerically solve flow control problems in various forms; see e.g., 21

[3, 6]. Popular approaches for solving unsteady flow control problems are explicit or 22

semi-implicit methods, both are limited by a Courant-Friedrichs-Lewy (CFL) condi- 23

tion. Recently, the class of full space Lagrange-Newton-Krylov-Schwarz (LNKSz) 24

algorithms was introduced for solving the steady state flow control problem [4, 5]. 25

The methods include two parts: a Lagrange-Newton method for the nonlinear sys- 26

tem obtained from the optimization problem and a Krylov subspace method for the 27

Jacobian system arising from the Newton method. In this paper we propose a class 28

of fully coupled parallel two-grid Lagrange-Newton-Krylov-Schwarz (LNKSz) alg- 29

orithms for the distributed control of unsteady incompressible flows. Since we use a 30

fully implicit scheme, the CFL condition can be completely relaxed. We show num- 31

erically that the proposed LNKSz is stable and converges well with relatively large 32

times steps, and it is robust with respect to some of the physical parameters, such as 33

the Reynolds number. 34

The rest of the paper is organized as follows. In Sect. 2, we present the unsteady 35

distributed control problems and introduce a fully implicit discretization scheme. 36
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Section 3 includes the main components and features of LNKSz. Some numeri- 37

cal results are given in Sect. 4. We end the paper with some concluding remarks 38

in Sect. 5. 39

2 Mathematical Model and Discretization 40

We consider the two-dimensional unsteady incompressible Navier-Stokes equations 41

in the velocity-vorticity formulation: 42

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δv1− ∂ω
∂y

= 0 in [0,T ]×Ω ,

−Δv2 +
∂ω
∂x

= 0 in [0,T ]×Ω ,

∂ω
∂ t
− 1

Re
Δω + v1

∂ω
∂x

+ v2
∂ω
∂y
− curl f = 0 in [0,T ]×Ω ,

(1)

where Ω is the computational domain and [0,T ] is the time interval. In the above 43

equations the velocity field v = (v1,v2) and the vorticity ω are the state variables, 44

f = ( f1, f2) is the external force, curl f =−∂ f1/∂y+∂ f2/∂x, and Re is the Reynolds 45

number. 46

In the distributed control problem we try to find an external force f over the 47

control domain Ω f ⊆Ω in order to achieve the goal 48

min F (v,ω , f) =
1
2

∫ T

0
G (v,ω) dt +

γ
2

∫ T

0

∫
Ω f

‖f‖2
2 dΩ dt (2)

subject to the constraints (1) with some initial and boundary conditions. Here, 49

G (v,ω) is the objective function of the optimal control problem, γ > 0 is a regu- 50

larization parameter used to restrict the magnitude of the external force so that it is 51

not unrealistically large. 52

For solving unsteady distributed control problems, it typically requires a combi- 53

nation of a discretization in space and time with an optimization method. In this paper 54

we follow the discretize-then-optimize approach with a finite difference method for 55

the space discretization and a second-order backward differentiation formula for the 56

time discretization. The original full-time-interval problem is too expensive to solve 57

even on the latest supercomputers, we therefore replace it by a sequence of subopti- 58

mal problems, which are similar to the original problem but only defined on the time 59

interval [t(k−1), t(k)], k = 1,2, . . . ,kmax, with t(0) = 0 and t(kmax) = T . Let x = (v,ω , f). 60

Then on each time interval we write the discrete suboptimzation problem as follows: 61

{
min F

(k)
h (x)

s.t. C(k)
h (x) = 0,

(3)

where F
(k)
h (x) is the restriction of F on the interval [t(k−1), t(k)], and C(k)

h (x) are the 62

constraints defined on the time interval [t(k−1), t(k)]. 63
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By introducing the Lagrange multipliers λ with respect to the state and control 64

variables, we define the following Lagrangian functional 65

L (k)(x,λ )≡F
(k)
h (x)+

(
λ ,C(k)

h (x)
)
. (4)

Let X ≡ (x,λ ). Then, for k = 1,2, . . . ,kmax, the KKT system obtained by differentiat- 66

ing (4) becomes 67

G(k)(X) =

(
∇xL (k)(x,λ )
∇λ L (k)(x,λ )

)
= 0. (5)

The optimality system (5) is a large, nonlinear, coupled, and muti-components 68

system. Moreover, the corresponding Jacobian matrix is indefinite and very ill- 69

conditioned. Hence, a good preconditioner is essential to solve the optimality system 70

efficiently. 71

3 Two-Grid Newton Method and Schwarz Preconditioners 72

The class of full space LNKSz method includes the following steps: the Lagrangian 73

functional is formed and differentiated to obtain the KKT system; then the inexact 74

Newton method with line search is applied; and at each Newton iteration the linear 75

system is solved with a one-level or two-level Schwarz preconditioned Krylov sub- 76

space method. We refer to LNKSz combined with the one-level (two-level) Schwarz 77

preconditioner as one-level (two-level) LNKSz method. 78

When using Newton’s method to solve the nonlinear system (5) on a grid, one 79

of the major problems is the deterioration of the convergence rate when the grid is 80

refined, specially for the first time step, since in this case the initial guess is not good 81

enough for the Newton iterations. After many experiments, we find that a solution to 82

the problem is “grid-sequencing”, which is quite effective in keeping the number of 83

nonlinear iterations small. In order to use grid-sequencing, we assume there are two 84

grids covering Ω , a coarse grid of size H and a fine grid of size h. We first use the 85

one-level method to solve the nonlinear problem on the coarse grid with the initial 86

guess obtained as a restriction of the fine grid solution from the previous timestep. 87

Of course, at the first time step, we choose the initial condition as the initial guess. 88

Then, we interpolate the solution to the fine grid and use it as an initial guess for the 89

nonlinear problem on the fine grid. We refer to this LNKSz method combined with 90

the grid-sequencing technique as the two-grid LNKSz method in which the same 91

coarse grid is also used to build the two-level Schwarz preconditioner for solving the 92

Jacobian problem. 93

We assume that Ω is covered by a non-overlapping and an overlapping partition 94

as in [2]. Let J be the Jacobian matrix of the nonlinear problem (5) on the fine grid 95

and let Rδ
i and R0

i be the restriction operator from Ω to its overlapping and non- 96

overlapping subdomains, respectively. Here δ is the size of the overlap. Then the 97

one-level restricted additive Schwarz (RAS) preconditioner [2] is defined as 98
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M−1
RAS =

Np

∑
i=1

(R0
i )

T J−1
i Rδ

i . (6)

with Ji = Rδ
i J (Rδ

i )
T and Np is the number of subdomains, which is the same as 99

the number of processors. Let Jc be the Jacobian matrix on the coarse grid and IH
h a 100

restriction operator from the fine grid to the coarse grid. Then a multiplicative type 101

two-level Schwarz preconditioner [8, 9] is defined as 102

M−1 =
(

I− (I−M−1
RASJ)(I−M−1

c J)(I−M−1
RASJ)

)
J−1 (7)

with M−1
c = (IH

h )T J−1
c IH

h and I is the identity matrix. 103

4 Numerical Experiments 104

Our algorithms are implemented based on the Portable Extensible Toolkit for Scien- 105

tific computing (PETSc) [1]. All computations are performed on an IBM BlueGene/L 106

supercomputer. 107

In the following, we describe a backward-facing step flow control problem [7]. 108

Let Ω = (0,6)× (0,1), Ω f = (0,1)× (0,0.5), T = 1, Γ be the boundary of the 109

domain Ω , Γ2 = {(x,y) ∈ Γ : 0 < y < 1,x = 6}, Γ4 = {(x,y) ∈ Γ : 0 < y < 1,x = 0}, 110

and Γ4,a = {(x,y)∈Γ4 : 0.5≤ y< 1}. Then the backward-facing step control problem 111

consists of finding (v1,v2,ω , f1, f2) such that the minimization 112

minF (ω , f) =
1
2

∫ T

0

∫
Ω

ω2 dΩ dt +
γ
2

∫ T

0

∫
Ω f

‖f‖2
2 dΩ dt (8)

is achieved subject to the constraints (1) with the following boundary conditions: 113

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 = vin on [0,T ]×Γ4,a,
v1 = vout on [0,T ]×Γ2,
v1 = 0 on [0,T ]×Γu,
v2 = 0 on [0,T ]×Γ ,

ω +
∂v1

∂y
− ∂v2

∂x
= 0 on [0,T ]×Γ ,

v(0,x,y)−v0 = 0 in Ω ,

ω(0,x,y)+
∂v0,1

∂y
− ∂v0,2

∂x
= 0 in Ω ,

(9)

where Γu = Γ \(Γ4,a∪Γ2). At the inflow boundary, a parabolic velocity profile vin = 114

8(1− y)(y− 1
2)cos(t) is imposed. At the outflow boundary, vout = y(1− y)cos(t) is 115

applied. The following initial velocity is defined by v0 = (v0,1,v0,2) with 116

v0,1 =

⎧⎪⎪⎨
⎪⎪⎩

y(1− y)+
1
16

y if 0≤ y≤ 1
2
,

y(1− y)+
1
16

(1− y) if
1
2
≤ y≤ 1,
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and v0,2(x,y) = 0. The parameter γ = 0.1. 117

In the experiments, we compare the following algorithms which are introduced 118

in Sect. 3: 119

• One-level LNKSz: one-level additive Schwarz is used as the Jacobian solve, and 120

inexact Newton is carried out on the fine grid; 121

• Two-level LNKSz: two-level multiplicative Schwarz is used as the Jacobian 122

solve, and inexact Newton is carried out on the fine grid; 123

• Two-grid LNKSz: two-level multiplicative Schwarz is used as the Jacobian solve 124

on the fine grid, inexact Newton is used on the coarse grid to generate the initial 125

guess for the inexact Newton on the fine grid. 126

In all the experiments, all Jacobian matrices are constructed approximately using a 127

multi-colored finite difference method. The size of the coarse grid H is taken as 4h, 128

where h is the size of the fine grid. GMRES(90) and FGMRES(90) are used to solve 129

the linear system at each Newton step on the coarse and the fine grids, respectively. 130

In the one-level method, the overlapping size is δ = 6. In the two-level and two-grid 131

methods, the overlapping sizes of the coarse grid and the fine grids are δc = 4 and 132

δ = 6, respectively. There are several nested iterative procedures in the proposed 133

algorithms, and each requires a proper stopping condition. We use 10−10 (10−6) as 134

the absolute (relative) condition for all linear and nonlinear solves, except for the 135

linear coarse solve of the two-level preconditioner, for which we use 10−4 (10−2) as 136

the absolute (relative) condition. The subdomain problems are solved with a sparse 137

LU factorization. 138

Next, we present results for the test problem and discuss some details of the 139

two-grid LNKSz. First, we compare the three methods in Table 1. Note that, the one- 140

level method doesn’t converge when Np = 1,024, which is caused by the divergence 141

of GMRES. Moreover, we note that: (1) for the linear solver, the number of GMRES 142

iterations for the one-level LNKSz is much larger than that for the two-level and two- 143

grid methods; (2) for the nonlinear solver, the numbers of Newton iterations for the 144

one-level and two-level methods are also larger than that for the two-grid method; 145

and (3) compared with the one-level and two-level methods, the total computing time 146

for the two-grid method is much smaller. When the Reynolds number increases from 147

200 to 400, for one-level and two-level methods, the average number of Newton iter- 148

ations and the total computing time become larger. With the help of grid-sequencing, 149

the convergence of the two-grid method is less sensitive to the Reynolds number. 150

Based on the results of Table 1, it is clear that the two-grid method is better than the 151

others. 152

An important implementation detail to consider in designing two-grid LNKSz is 153

to balance the quality of the initial guess for the fine grid Newton iterations and the 154

computing time on the coarse solver. In Table 2, we present a comparison of the com- 155

puting time for the two-level and two-grid methods. In this table, we report the total 156

time spent on the Newton iterations at some time steps, the time spent on the Newton 157

iterations on the coarse solver, and the percentage between these two computational 158

costs. We observe that the cost of Newton iterations on the coarse grid is very small 159

compared with the total computational cost. It is important to note that the coarse 160
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Table 1. A comparison of three methods. 768× 128 grid, and Δ t = 0.1 (i.e., there are 10
time steps). “Np" stands for the number of processors which is the same as the number of
subdomains, “IN” is the average number of inexact Newton iterations per time step on the fine
grid, “RAS” is the average number of RAS preconditioned GMRES iterations per Newton
iteration, and “Time” is the total computing time in seconds. “ ∗ ∗” means the divergence of
GMRES.

Np Method IN RAS Time IN RAS Time

Re=200 Re=400
64 One-level 3.2 165.4 1370.4 3.7 158.9 1557.5
64 Two-level 3.2 20.4 1342.8 3.7 19.2 1528.0
64 Two-grid 2.1 18.7 898.2 2.0 18.0 836.4
256 One-level 3.2 531.3 795.5 3.7 632.9 1052.3
256 Two-level 3.2 27.4 479.9 3.7 27.1 560.1
256 Two-grid 2.1 25.5 317.5 2.0 26.1 313.2
1024 One-level ∗∗ ∗∗
1024 Two-level 3.2 66.3 314.3 3.7 67.9 376.9
1024 Two-grid 2.1 64.2 208.5 2.0 68.5 209.8

grid has to be sufficiently fine so that the coarse solution has a reasonable accuracy, 161

otherwise, it won’t be able to provide a good initial guess for the fine grid nonlinear 162

solver. 163

Table 2. A comparison of the computing time for the test problem at several different time
steps. Re = 400, 768× 128 grid, and Δ t = 0.1 (i.e., there are 10 time steps). The heading
“Timestep(k)" represents the time step k, “Time" is the total time spent on the Newton itera-
tions at the time step k, “Coarse_time" is the time spent on the Newton iterations on the coarse
solver at the time step k, and “Percent(%)" is (“Coarse_time"/“Time").

t2Np Timestep(k) Time Coarse_time Percent(%) Time

t2Two-grid Two-level
t264 k = 1 110.0 3.87 3.52% 458.9
t264 k = 2 80.0 2.39 2.99% 117.0
t264 k = 5 82.5 2.50 3.03% 118.0
t264 k = 10 84.7 2.51 2.96% 119.0
t2256 k = 1 38.6 1.71 4.43% 172.8
t2256 k = 2 29.7 0.99 3.33% 41.4
t2256 k = 5 30.0 1.04 3.43% 41.6
t2256 k = 10 30.8 1.06 3.44% 42.3
t21024 k = 1 23.3 1.37 5.88% 115.1
t21024 k = 2 20.6 0.68 3.30% 28.1
t21024 k = 5 21.2 0.72 3.39% 28.4
t21024 k = 10 21.5 0.74 3.44% 30.8
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One of the difficulties in the nonlinear solver is the choice of the initial guess. 164

In Fig. 1, we show the nonlinear residual history by using three different methods at 165

the first time step (i.e., k = 1). One can see that the nonlinear system is difficult to 166

solve by using one-level or two-level method. In fact, it takes 11 iterations for the 167

one-level or two-level method to converge. By using the two-grid method only three 168

Newton iterations are required to satisfy the desired stopping condition. 169
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Fig. 1. Nonlinear residual history by using three different methods at the first time step, for
Re = 200, 768×128 grid and 64 processors, and Δ t = 0.1
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5 Conclusions 170

In this paper, we developed a family of two-grid algorithms for distributed control 171

of unsteady incompressible flows. With the help of the two-grid Newton method and 172

the two-level Schwarz preconditioner, we showed numerically that these strategies 173

provide substantial improvement of the overall method in terms of the total com- 174

puting time, the number of linear iterations, and the number of Newton iterations, 175

especially when the number of processors is large. 176
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