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1 Introduction 9

Numerical methods for global atmospheric modeling have been widely studied in 10

many literatures [5, 7, 9]. It is well-recognized that the global atmospheric flows can 11

be modeled by fully compressible Euler equations with almost no approximations 12

necessary [7]. However, due to the multi-scale nature of the global atmosphere and 13

the high cost of computation, other simplified models have been favorably used in 14

most community codes. 15

There are two main difficulties in using fully compressible Euler equations in 16

atmospheric flow simulations. One is that the fast waves in the equations lead to 17

very restrictive stability conditions for explicit time-stepping methods; see, e.g., [11]. 18

Another difficulty is that the flow is nearly compressible and the low Mach number 19

results in large numerical dissipation errors in many classical numerical schemes. 20

To deal with the fast acoustic and inertio-gravity waves in the fully compressible 21

model, we develop a fully implicit method so that the time step size is no longer 22

constrained by the stability condition. And to treat the low-Mach number flow, an 23

improved version of the Advection Upstream Splitting Method (AUSM+-up, [8]) is 24

adapted. This technique has been successfully employed for a shallow water model 25

in [12]. In the fully implicit solver, we use an inexact Newton method to solve the 26

nonlinear system arising at each time step; and the linear Jacobian system for each 27

Newton step is then solved by a Krylov subspace method with an additive Schwarz 28

preconditioner. We show by numerical experiments on a machine with thousands of 29

processors that the parallel Newton-Krylov-Schwarz approach works well for fully 30

compressible atmospheric flows. 31
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2 Governing Equations 32

Various formulations of the governing equations for mesoscale atmospheric models 33

can be found in, e.g., [6]. In this paper, we focus on the compressible Euler equations 34

by restricting the study on two dimensions (the x− z plane) and omitting the Coriolis 35

terms. The compressible Euler equations for the atmosphere take the following form 36

∂Q
∂ t

+
∂F
∂x

+
∂G
∂ z

+ S = 0,

where 37

Q =

⎛
⎜⎜⎝

ρ
ρu
ρw
ρθ

⎞
⎟⎟⎠ ,F =

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuw
ρuθ

⎞
⎟⎟⎠ ,G =

⎛
⎜⎜⎝

ρw
ρwu

ρw2 + p
ρwθ

⎞
⎟⎟⎠ ,S =

⎛
⎜⎜⎝

0
0

ρg
0

⎞
⎟⎟⎠ , (1)

where g = 9.80665m/s2 is the effective gravity on the surface of the Earth. In the 38

equation, the prognostic variables are the density ρ , the velocity (u,w) and the po- 39

tential temperature θ of the atmosphere. The system is closed with the equation of 40

state 41

p = p00

(
ρRθ
p00

)γ
,

where p00 = 1013.25 hPa is the reference pressure on the surface, R = 287.04 J/ 42

(kg ·K) is the gas constant for dry air and γ = 1.4. For the sake of brevity, we assume 43

the computational domain Ω is a rectangle and the boundary conditions are given in 44

Sect. 5. In some cases, a physical dissipation is added to the left-hand-side of the 45

momentum and velocity equations. The dissipation term is −∇ · (νρ∇φ) for φ = u, 46

w, and θ . 47

To recover the hydrostatic solution from the equation, instead of using (1) di- 48

rectly, the following shifted system is often preferred [6, 11]: 49

Q =

⎛
⎜⎜⎝

ρ ′
ρu
ρw
(ρθ )′

⎞
⎟⎟⎠ ,F =

⎛
⎜⎜⎝

ρu
ρu2 + p′

ρuw
ρuθ

⎞
⎟⎟⎠ ,G =

⎛
⎜⎜⎝

ρw
ρwu

ρw2 + p′
ρwθ

⎞
⎟⎟⎠ ,S =

⎛
⎜⎜⎝

0
0

ρ ′g
0

⎞
⎟⎟⎠ (2)

where 50

ρ ′ = ρ− ρ̄, p′ = p− p̄, (ρθ )′ = ρθ − ρ̄θ̄ 51

and the variables with ‘bar’ satisfy the hydrostatic condition ∂ p̄
∂ z = −ρ̄g and θ̄ is 52

obtained from the equation of state. It is clear that the flux Jacobian of the shifted 53

system (2) in each spatial direction is, respectively, 54

∂F
∂Q

=

⎛
⎜⎜⎝

0 1 0 0
−u2 2u 0 c2/θ
−uw w u 0
−uθ θ 0 u

⎞
⎟⎟⎠ ,

∂G
∂Q

=

⎛
⎜⎜⎝

0 0 1 0
−wu w u 0
−w2 0 2w c2/θ
−wθ 0 θ w

⎞
⎟⎟⎠ ,

where c =
√

γ p/ρ is the sound speed. 55
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3 Discretizations 56

Suppose the computational domain is covered by a uniform rectangular Nx ×Nz 57

mesh. Mesh cell Ci j is centered at (xi,z j), for i = 1, . . . ,Nx and j = 1, . . . ,Nz, with 58

mesh size Δx×Δz. The solution in cell Ci j at time t is approximated as 59

Qi j ≈ 1
ΔxΔz

∫ z j+Δ z/2

z j−Δ z/2

∫ xi+Δx/2

xi−Δx/2
Q(x,z, t)dxdz.

We employ a cell-centered finite volume method for the spatial discretization of 60

the compressible Euler equations (2). Integrating (2) over Ci j leads to the follow- 61

ing semi-discrete system 62

∂Qi, j

∂ t
+

Fi+1/2, j−Fi−1/2, j

Δx
+

Gi, j+1/2−Gi, j−1/2

Δz
+ S(Qi, j) = 0,

where the numerical fluxes of F and G are averaged on the edges of each mesh cell. 63

To calculate the numerical fluxes on cell edges, we first employ a piecewise linear 64

formulation to reconstruct constant states in both left and right direction, i.e., 65

Q−
i+ 1

2 , j
= Qi j +

1
4
(Qi+1, j−Qi−1, j), Q+

i− 1
2 , j

= Qi j− 1
4
(Qi+1, j−Qi−1, j),

Q−
i, j+ 1

2
= Qi j +

1
4
(Qi, j+1−Qi, j−1), Q+

i, j− 1
2
= Qi j− 1

4
(Qi, j+1−Qi, j−1).

Then we use an improved version of the Advection Upstream Splitting Method 66

(AUSM+-up, [8]) to approximate the numerical fluxes based on the reconstructed 67

states. The basic idea of AUSM+-up scheme is to split the flux into two parts, e.g., 68

F = F (c) +F(p), 69

where the convective flux F (c) = ρu(1,u,w,θ )T and the pressure flux F (p) = 70

(0, p′,0,0)T are estimated separately, both in an upwinded manner. For instance, 71

denote the left and right reconstructed states for the prognostic variables on an edge 72

of a mesh cell as (ρ−,u−,w−,θ−) and (ρ+,u+,w+,θ+), the pressure flux is approx- 73

imated by F (p) ≈ (0, p̃′,0,0)T , where 74

p̃′ = P+
5 (M−)p′−+P−

5 (M+)p′+− (3/2)P+
5 (M−)P−

5 (M+)ρ̃ c̃(u+−u−),

and 75

ρ̃ = (ρ−+ρ+)/2, c̃ = (
√

γ p+/ρ++
√

γ p−/ρ−)/2, p′± = p±− p̄,

P±
5 (M) =

{
(1± sign(M))/2, if |M| ≥ 1,
M±

2 (M)
[
(±2−M)∓3MM∓

2 (M)
]
, otherwise,

M±
2 (M) = (M±1)2/4, M± = u±/c̃.

More details can be found in [8]. 76
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For the temporal integration, instead of using explicit methods that suffer from 77

severe stability restriction on the time step size, we employ a fully implicit method. 78

Given a semi-discrete system 79

∂Q
∂ t

+L (Q) = 0, 80

we use the following second-order backward differentiation formula (BDF-2): 81

1
2Δ t

(
3Q(k)−4Q(k−1)+Q(k−2)

)
+L (Q(k)) = 0.

Here Q(k) denotes the solution vector Q evaluated at the k-th time step with a fixed 82

time step size Δ t. Only at the first time step, a first-order backward Euler method is 83

used. 84

4 Newton-Krylov-Schwarz Solver 85

The fully implicit method leads to a large sparse nonlinear algebraic system at each 86

time step. In this study, we use the Newton-Krylov-Schwarz (NKS) algorithm as the 87

nonlinear solver. Given a nonlinear system F (X) = 0, an inexact Newton method 88

is used to solve the system in the outer loop of the NKS approach. Let Xn be the 89

approximate solution for the n-th Newton iterate, we find the next solution Xn+1 as 90

Xn+1 = Xn +λnsn, n = 0,1, . . .

where λn is the steplength decided by a linesearch procedure and sn is the Newton 91

correction. We then use the right-preconditioned GMRES (restarted every 30 itera- 92

tions) method to solve the Jacobian system 93

JnM−1(Msn) =−F (Xn), Jn = F ′(Xn) 94

until the linear residual rn = Jnsn +F (Xn) satisfies 95

‖rn‖ ≤ η‖F (Xn)‖, 96

where η > 0 is the nonlinear forcing term that has been set to be a fixed value η = 97

1.0×10−6 in our test. A multi-coloring finite difference method [4] is used to form 98

the Jacobian Jn in the calculation. To achieve uniform residual error at each time 99

step, we use the same adaptive stopping conditions as in [13]. 100

Given the computational domain Ω , we first decompose it into non-overlapping 101

subdomains Ωk, k = 1, . . . ,np, where np is the number of subdomains and also the 102

number of processor cores. Then each subdomain Ωk is extended to Ω δ
k within Ω 103

and the number of overlapping mesh layers between subdomains is δ . For the over- 104

lapping domain decomposition, a preconditioner M−1 is then constructed using the 105

one-level restricted additive Schwarz (RAS, [2]) method defined as follows 106
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M−1 =
np

∑
k=1

(R0
k)

T (Jn)
−1
k Rδ

k .

Here (Jn)k is the Jacobian matrix defined on subdomain Ω δ
k and Rδ

k and (R0
k)

T are re- 107

striction and prolongation operators respectively. Given a solution vector defined on 108

Ω , Rδ
k restricts the vector to the overlapping subdomain Ω δ

k while (R0
k)

T prolongates 109

the restricted vector back to the whole domain Ω by putting zeros not only outside 110

Ω δ
k but also within Ω δ

k \Ωk. In the implementation of the NKS solver, we use a 111

point-block ordering for both the unknowns and the nonlinear equations, resulting 112

in Jacobian matrices with 4× 4-block entries. A point-block version of sparse LU 113

factorization is then used to solve the subdomain problems. 114

5 Numerical Results 115

An IBM BlueGene/L supercomputer with 4,096 nodes is used to conduct our numer- 116

ical tests. Each node of the computer has a dual-core IBM PowerPC 440 processor 117

running at 700 MHz and 512 MB local memory. We implement the NKS algorithm 118

based on the Portable, Extensible Toolkits for Scientific computations (PETSc, [1]) 119

library. In the numerical tests, the overlapping factor in the NKS solver is fixed at 120

δ = 2. 121

We study a test case describing a rising thermal bubble that is similar to those 122

studied in [3] and [10]. The computational domain is 123

Ω =
{
(x,z)

∣∣x ∈ [−10.0 km,10.0 km],z ∈ [0,10.0 km]
}
, 124

which is assumed to be horizontally periodic with rigid walls (zero normal velocity, 125

i.e., w = 0 here) at the bottom and top boundaries. The initial condition for the prob- 126

lem is obtained from a hydrostatic state with u = w = 0 and θ̄ = 300 K by adding a 127

perturbation 128

Δθ =

{
2.0cos(0.5πL)K if L≤ 1.0,

0.0 K otherwise,
129

where 130

L =

√(
x−0.0 km

2.0 km

)2

+

(
z−2.0 km

2.0 km

)2

. 131

A physical dissipation ν = 15.0 m2/s is employed in the calculation. The results on 132

a 1,000× 500 mesh using the fully implicit method with Δ t = 2.0 s are provided 133

in Fig. 1. We find that the results are in agreement with those provided in several 134

publications; see, e.g., [3, 10] and [6]. 135

To investigate the performance of the preconditioner, we run a fixed size problem 136

on a 1,920×960 mesh for 50 time steps with Δ t = 2.0 s by using gradually doubled 137

numbers of processor cores (np). The results on the averaged number of Newton and 138

GMRES iterations per time step are provided in Fig. 2, from where we observe that 139
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Fig. 1. Contour plots of the potential temperature perturbation (contour interval: 0.2 K)
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Fig. 2. Averaged numbers of Newton and GMRES iterations per time step
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the number of Newton iterations is not sensitive to np but the number of GMRES it- 140

erations needed for each time step increases as np increases. The total compute time 141

and the parallel scalability are provided in Fig. 3, which clearly shows that as more 142

processors are used for the fixed size problem, the total compute time is reduced 143

accordingly and the parallel scalability from 512 to 8,192 processor cores is nearly 144
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Fig. 3. Total compute time (left) and parallel scalability (right) results
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optimal, with the parallel efficiency reaching 90.38%. Because of the page limit, 145

we only present a one-level restricted addtive Schwarz method for the compressible 146

Euler problem and only provide some preliminary results in this paper. More ad- 147

vanced algorithms such as multilevel hybrid Schwarz methods will be investigated 148

in a forthcoming paper and more numerical experiments will be carried out in it. 149
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