
Page 63

UN
CO

RR
EC

TE
D

PR
O
O
F

1

Multi-level Decompositions of Electronic Wave 2

Functions 3

Harry Yserentant 4

Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany 5

yserentant@math.tu-berlin.de 6

1 Introduction 7

The approximation of high-dimensional functions, whether they be given explic- 8

itly or implicitly as solutions of differential equations, represents one of the grand 9

challenges of applied mathematics. High-dimensional problems arise in many fields 10

of application such as data analysis and statistics, but first of all in the sciences. 11

One of the most notorious and complicated problems of this type is the Schrödinger 12

equation. The Schrödinger equation forms the basis of quantum mechanics and is 13

of fundamental importance for our understanding of atoms and molecules. It links 14

chemistry to physics and describes a system of electrons and nuclei that interact by 15

Coulomb attraction and repulsion forces. As proposed by Born and Oppenheimer in 16

the nascency of quantum mechanics, the slower motion of the nuclei is mostly sepa- 17

rated from that of the electrons. This results in the electronic Schrödinger equation, 18

the problem to find the eigenvalues and eigenfunctions of the Hamilton operator 19

H = − 1
2

N

∑
i=1

Δi −
N

∑
i=1

K

∑
ν=1

Zν
|xi−aν | +

1
2

N

∑
i, j=1
i�= j

1
|xi−x j| . (1)

It acts on functions with arguments x1, . . . ,xN ∈ R
3, which are associated with the 20

positions of the considered electrons. The aν are the fixed positions of the nuclei and 21

the values Zν the charges of the nuclei in multiples of the absolute electron charge. 22

The high dimensionality of the equation immediately rules out classical dis- 23

cretization methods for partial differential equations as numerical analysts are 24

familiar with. To overcome this curse of dimensionality, procedures like the Hartree- 25

Fock method and its many variants and successors or density functional theory based 26

methods have been developed over the decades. They are used with much success and 27

form the basis of a steadily expanding branch of chemistry. See [6] for an overview 28

on the present state of the art in quantum chemistry, and [3, 10], and [11] for mathe- 29

matically oriented expositions. All these methods suffer, however, either from a priori 30

modeling errors or from the fact that it is not clear how the accuracy can be system- 31

atically improved without the effort truly exploding for larger numbers of electrons. 32
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It is therefore rather surprising that simple sparse grid-like multi-level expansions of 33

the electronic wave functions can be constructed whose convergence rate, measured 34

in terms of the number of basis functions involved, is independent of the number of 35

electrons and does not much differ from that for a two- or even one-electron system. 36

The purpose of this note is to explain these results and the effects behind them. For 37

details we refer to the references. 38

2 Regularity and Decay of the Wave Functions 39

The at least asymptotically, in relation to the high space dimension rapid conver- 40

gence of these expansions is based on very particular properties of the solutions of 41

the electronic Schrödinger equation: their regularity, that surprisingly increases with 42

the number of electrons, the decay behavior of their mixed derivatives, and their 43

antisymmetry enforced by the Pauli principle. 44

The solution space of the electronic Schrödinger equation is first the Hilbert 45

space H1 that consists of the square integrable functions 46

u : (R3)N→ R : (x1, . . . ,xN)→ u(x1, . . . ,xN) (2)

with square integrable first-order weak derivatives; the dimension of their domain 47

increases with the number N of electrons. The norm ‖ · ‖1 on H1 is composed of the 48

L2-norm ‖ · ‖0 induced by the L2-inner product and the L2-norm of the gradient. In 49

the language of physics, the space H1 is the space of the wave functions for which 50

the total position probability remains finite and the expectation value of the kinetic 51

energy can be given a meaning. It can be shown that the second-order differential op- 52

erator (1) induces a bounded bilinear form on H1 that satisfies a Garding inequality. 53

The mathematically precise formulation of the eigenvalue problem is therefore the 54

corresponding weak form of the equation on the space H1, the same kind of weak 55

form that one knows from the finite element method. The physically admissible so- 56

lutions are components u(x) = ψ(x,σσσ) of a full, spin-dependent wave function. By 57

the Pauli principle, they are therefore antisymmetric with respect to the exchange of 58

the positions xi of electrons of the same spin σi =±1/2. 59

To describe the regularity properties of the eigenfunctions, we need to introduce 60

a scale of norms that are defined in terms of Fourier transforms. We first introduce 61

the polynomials 62

Piso(ωωω) = 1+
N

∑
i=1
|ωωω i|2, Pmix(ωωω) =

N

∏
i=1

(
1+ |ωωω i|2

)
. (3)

The ωωω i ∈ R
3 forming together the variable ωωω ∈ (R3)N can be associated with the 63

momentums of the electrons. The expressions |ωωω i| are their euclidean norms. The 64

norms describing the smoothness of the solutions are now given by 65

|||u|||2ϑ,m =

∫
Piso(ωωω)mPmix(ωωω)ϑ |û(ωωω)|2 dωωω. (4)
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They are defined on the Hilbert spaces Hϑ,m
mix that consist of the square integrable 66

functions (2) for which these expressions remain finite. For nonnegative integer 67

values m and ϑ , the norms measure the L2-norm of weak partial derivatives. The 68

parameter m measures the isotropic smoothness that does not distinguish between 69

different directions, and the parameter ϑ the mixed smoothness in direction of the 70

three-dimensional coordinate spaces of the electrons. The spaces L2 and H1 are spe- 71

cial cases of such spaces. 72

It has been proved in [12] and [13] that the physically admissible eigenfunctions u 73

of the electronic Schrödinger operator (1) are at least contained in Hϑ ,1
mix for ϑ = 1/2. 74

Recently we were able to improve this result substantially. We have shown in [9] that 75

the eigenfunctions u of the electronic Schrödinger operator are, independent of their 76

symmetry properties, contained in 77

H1,0
mix ∩

⋂
ϑ<3/4

Hϑ ,1
mix . (5)

The bound 3/4 is optimal and can, except for special cases, neither be reached nor 78

improved further. The proof is based on a representation of the eigenfunctions that 79

has been derived in [15] and for the two-electron case in [1]. It has been shown in 80

[15] that the eigenfunctions can be written as products 81

u(x) = exp

(
∑
i< j

φ(xi−x j)

)
v(x) (6)

of more regular functions v ∈ H1,1
mix and a universal factor that covers their singulari- 82

ties. This kind of splitting can be traced back to the work of Hylleraas [8] in the early 83

years of quantum mechanics. It has been used in [4] and [7] to study the Hölder regu- 84

larity of the eigenfunctions. There is a lot of freedom in the choice of the function φ . 85

It needs only to be of the form 86

φ(x) = φ̃ (|x|), φ̃ ′(0) =
1
2
, (7)

where φ̃ : [0,∞)→ R is an infinitely differentiable function behaving sufficiently 87

well at infinity. The regularity is therefore determined by that of the explicitly known 88

factor from (6) that describes the behavior of the solutions at the singular points of 89

the electron-electron interaction potential. 90

The splitting (6) is of independent interest since it is obviously possible to obtain 91

better convergence rates for the regular part of the solutions than for the solutions 92

themselves. We will restrict ourselves, however, here to the direct approximation 93

of the eigenfunctions. The domain of the eigenfunctions is infinitely extended. The 94

eigenfunctions are, however, strongly localized. It is known for a long time that an 95

eigenfunction u for an eigenvalue below the ionization threshold of the given atom or 96

molecule decays exponentially in the L2-sense. That means there is a constant γ > 0 97

such that the function 98

x → exp

(
γ

N

∑
i=1
|xi|

)
u(x), (8)
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is square integrable. This constant depends on the distance of the eigenvalue under 99

consideration to the bottom of the essential spectrum. More details and references to 100

the literature can be found in [14]. It has been shown in [15] that these exponentially 101

weighted eigenfunctions admit the same kind of representation (6) as the eigenfunc- 102

tions themselves. Thus they share with them the described regularity properties [9]. 103

The convergence analysis is based on this observation. 104

3 Sparse Grids and Antisymmetry 105

To explain the meaning of these results for the approximation of the solutions of the 106

Schrödinger equation, we consider a simple model problem, the approximation of 107

functions u of the variables x1, . . . ,xd that are odd and 2π-periodic in every coordi- 108

nate direction on the cube Q = [0,π ]d by tensor products 109

φ(k,x) =
d

∏
i=1

φki(xi) (9)

of the one-dimensional trigonometric polynomials 110

φki(ξ ) =
√

2
π

sin(kiξ ) (10)

labeled by the components ki = 1,2, . . . of the multi-indices k. Our presentation 111

closely follows [14]. Functions of the given kind that are square integrable over Q 112

can be expanded into a multivariate Fourier series 113

u(x) = ∑
k

û(k)φ(k,x), (11)

where the expansion coefficients are given by 114

û(k) =
∫

Q
u(x)φ(k,x)dx. (12)

We measure the speed of convergence of this series in the sense of the L2-norm which 115

reads in terms of the expansion coefficients 116

‖u‖2
0 = ∑

k
|û(k)|2. (13)

The speed of convergence of the series is therefore determined by the speed with 117

which the expansion coefficients decay. Assume that all partial derivatives of u of 118

order s exist and are square integrable. This implies that 119

|u |2s = ∑
k
|k |2s |û(k)|2 (14)

remains finite, where |k | is defined by 120
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|k |2 =
d

∑
i=1

k2
i . (15)

Consider now the finite part uε of the series (11) that extends over the multi-indices k 121

inside the ball of radius 1/ε around the origin, for which 122

|k | < 1
ε
. (16)

Due to the orthonormality of the functions (9), uε is the best approximation of u by 123

a linear combination of the selected basis functions. It holds 124

‖u−uε‖2
0 ≤ ε2s ∑

k
|k |2s |û(k)|2 = ε2s |u |2s . (17)

The number n of these basis functions grows like 125

n ∼ 1
εd (18)

as ε goes to zero. This is out of every reach for higher space dimensions d, the 126

curse of dimensionality. It can only be broken if one restricts oneself to a class of 127

functions whose smoothness increases sufficiently fast with the space dimension d. 128

At this place the mixed regularity comes into play. Consider functions u that possess 129

corresponding weak partial derivatives and set 130

|u |21,mix =

∫
Q

∣∣∣ ∂ du
∂x1 . . .∂xd

∣∣∣2 dx (19)

or, in terms of the expansion coefficients, 131

|u |21,mix = ∑
k

( d

∏
i=1

ki

)2

|û(k)|2. (20)

Let u∗ε be the function represented by the finite part of the series (11) that extends 132

over the multi-indices k inside the hyperboloid given by 133

d

∏
i=1

ki <
1
ε
, (21)

instead of the ball (16). The L2-error can then be estimated as 134

‖u−u∗ε‖0 ≤ ε |u |1,mix (22)

and tends like O(ε) to zero. The dimension n of the space spanned by the functions 135

(9) for which (21) holds, now increases, however, only like 136

n ∼ | logε |d−1ε−1. (23)
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This shows that a comparatively slow growth of the smoothness can help to reduce 137

the complexity substantially, an observation that forms the basis of the sparse grid or 138

hyperbolic cross techniques; see [2] for an overview. Due to the presence of the loga- 139

rithmic term, the applicability of such methods is, however, still limited to moderate 140

space dimensions. 141

The rescue comes from the symmetry properties of the wave functions enforced 142

by the Pauli principle. They represent a possibility to escape from this dilemma with- 143

out forcing up the smoothness requirements further, which has first been noted by 144

Hackbusch [5]. Consider functions u that are antisymmetric with respect to the ex- 145

change of their variables, i.e., that 146

u(Px) = sign(P)u(x) (24)

holds for all permutation matrices P. It is not astonishing that such symmetry prop- 147

erties are immediately reflected in the expansion (11). Let 148

φ̃ (k,x) =
1√
d!

∑
P

sign(P)φ(k,Px) (25)

be the renormalized, antisymmetric parts of the functions (9), where the sums extend 149

over the d! permutation matrices P of order d. The antisymmetrized functions (25) 150

can be written as determinants 151

1√
d!

∣∣∣∣∣∣∣

φk1(x1) . . . φkd (x1)
...

. . .
...

φk1(xd) . . . φkd (xd)

∣∣∣∣∣∣∣
(26)

and evaluated in this way. For the functions u in the given symmetry class, many 152

terms in the expansion (11) can be combined. It finally collapses into 153

u(x) = ∑
k1>...>kd

(
u, φ̃ (k, ·))φ̃(k,x), (27)

where the expansion coefficients are the L2-inner products of u with the correspond- 154

ing functions (25). The number of basis functions needed to reach a given accuracy 155

is reduced by more than the factor d!, a very significant gain for larger dimensions d. 156

It remains to count the number of the sequences k1 > k2 > .. . > kd of natural 157

numbers that satisfy the condition (21) and with that also the number of basis func- 158

tion (25) needed to reach the accuracy O(ε). To study the asymptotic behavior of 159

the number of these sequences in dependence of the dimension d and the accuracy ε , 160

it suffices when we restrict ourselves to the case ε = 1/2L, with positive integers L. 161

That is, we have to give bounds for the number of sequences k1 > .. . > kd for which 162

d

∏
i=1

ki ≤ 2L. (28)

The problem to estimate this number has to do with the prime factorization of inte- 163

gers. To simplify this problem, we group the numbers ki into levels and decompose 164

the space of the trigonometric polynomials correspondingly. Let 165
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Fig. 1. The numbers a∗(L) and a(d,L) for d = 10,15,20, . . . ,175

�(ki) = max
{
� ∈ Z

∣∣ 2� ≤ ki
}
. (29)

An upper bound for the number of these sequences is then the number a(d,L) of the 166

sequences k1 > k2 > .. . > kd of natural numbers for which 167

d

∏
i=1

2�(ki) ≤ 2L. (30)

The numbers a(d,L) can be calculated recursively; see [14] for details. A crude esti- 168

mate yields a(d,L) = 0 if L+ 1 < d. Thus 169

a∗(L) := max
d≥1

a(d,L) = max
d≤L+1

a(d,L). (31)

Figure 1 shows, in logarithmic scale, how the a(d,L) behave compared to their joint 170

least upper bound a∗(L). It becomes obvious from this picture that this upper bound 171

exceeds the actual dimensions for larger d by many orders of magnitude, the more 172

the more the number d of variables increases. The joint least upper bound that is 173

independent of d for the number of the sequences k1 > .. . > kd of natural numbers 174

ki for which (28) holds grows at least like ∼2L since already for the case d = 1, 175

there are 2L such “sequences”, namely those with values k1 = 1, . . . ,2L. Figure 1 176

suggests conversely that the upper bound (31) for the number of these sequences 177

does not grow much faster than ∼2L. This is in fact the case since the number of the 178

decreasing infinite sequences k1 ≥ k2 ≥ k3 ≥ . . . of natural numbers for which 179

∞

∏
i=1

2�(ki) ≤ 2L, (32)

with L a given nonnegative integer, is bounded by 180

L

∑
�=0

p(�)2�, (33)
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where p(�) denotes the partition number of �, the number of possibilities of repre- 181

senting � as sum of nonnegative integers without regard to the order. To show this, we 182

observe that the number of these sequences is bounded by the number of sequences 183

k1,k2,k3, . . . of natural numbers for which at least their levels �(k1), �(k2), . . . de- 184

crease and that satisfy (32). We show that the expression (33) counts the number of 185

these sequences. Let the integers �i = �(ki) first be given. As there are 2�i natural 186

numbers ki for which �(ki) = �i, namely ki = 2�i , . . . ,2�i+1−1, there are 187

∞

∏
i=1

2�i = 2�, � =
∞

∑
i=1

�i, (34)

sequences k1,k2,k3, . . . for which the �(ki) attain the prescribed values �i. The prob- 188

lem thus reduces to the question how many decreasing sequences of nonnegative 189

integers �i exist that sum up to values �≤ L, i.e., for which 190

∞

∑
i=1

�i = �. (35)

This number is by definition the partition number p(�) of the nonnegative integer �. 191

Every sequence k1 > k2 > .. . > kd of natural numbers for which (28) holds can 192

obviously be expanded to an infinite, decreasing sequence k1 ≥ k2 ≥ k3 ≥ . . . of 193

natural numbers that satisfies the condition (32) by setting all ki = 1 for i > d. The 194

sum (33) represents therefore also an upper bound for the number of these sequences. 195

The partition number plays a big role in combinatorics. Hardy and Ramanujan 196

have shown that it behaves asymptotically like 197

p(�) ∼ exp
(
π
√

2�/3
)

�
(36)

as � goes to infinity. We conclude that the upper bound (31) for the number of deter- 198

minants needed to reach an error ≤ 2−L|u|1,mix behaves like 199

a∗(L) = (2L)1+δ (L), 0≤ δ (L)≤ cL−1/2, (37)

where c is a constant that depends neither on L nor on the space dimension d or the 200

function u. Using the representation of a∗(L) from (31) and the recursively calculated 201

values a(d,L), the exponents 1+ δ (L) can be calculated exactly. They decay for L 202

ranging from 10 to 1,000 monotonely from 1.406 to 1.079. For L = 100, 1+δ (L) = 203

1.204. In other words, the error tends faster to zero in the number n of determinants 204

than 205

∼ 1
n1−ϑ (38)

for any given ϑ in the interval 0 < ϑ < 1. Not only does the convergence rate de- 206

teriorate neither with the dimension nor the number of variables, it behaves asymp- 207

totically almost as in the one-dimensional case. Similar results hold for partially 208

antisymmetric functions as they occur in quantum mechanics. 209
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4 Eigenfunction and Wavelet Expansions 210

The constructions sketched in the previous section transfer to the more complicated 211

case of the expansion of the solutions of the electronic Schrödinger equation into cor- 212

respondingly antisymmetrized tensor products of three-dimensional Hermite func- 213

tions or other eigenfunctions of three-dimensional Schrödinger-like operators as in 214

[14] or wavelets as in [16]. Indeed, it finally turns out that the convergence rate mea- 215

sured in terms of the number of basis functions involved does not deteriorate with the 216

number of electrons and comes close to that for the two- or even one-particle case. 217

We do not explicate the partly technical details here but explain how one can utilize 218

the intermediate smoothness of the exponentially weighted solutions (8) to obtain 219

optimal convergence rates. 220

Let eψ be exponential factor in (8). The argumentation starts from functions v 221

whose exponentially weighted counterparts eψv are located in H1,1
mix, that is, have in 222

contrast to the solutions of the Schrödinger equation full mixed regularity. The es- 223

sential observation is that the norm |||eψv|||1,1 can be estimated by the sum of the 224

weighted L2-norms ‖eψDαααv‖0 of the involved derivatives Dααα v of v and vice versa. 225

This comes from the special structure of the function ψ . The norm |||eψv|||1,1 mea- 226

sures therefore the exponentially weighted L2-norms of the involved derivatives of v. 227

It is therefore reasonable to start from a sequence Tn : H1 → H1, n = 1,2, . . . , of 228

linear approximation operators that are uniformly H1-bounded and to require that 229

‖v−Tnv‖1 � n−q |||eψv|||1,1 (39)

for all functions v∈H1 for which eψv∈H1,1
mix. The constant q> 0 is an unspecified 230

convergence rate also depending on what n means. These assumptions form a proper 231

framework for sparse grid-like approximation methods as those mentioned above 232

modeled after the example from the last section. Another example is the expansion 233

into tensor products of three-dimensional functions with given angular parts; see 234

[14]. The range of the Tn is in this case infinite dimensional. The exponential factor 235

is the tribute paid to the infinite extension of the domain. The assumption (39) implies 236

for the functions u ∈H1 for which eψu∈Hϑ ,1
mix for some 0<ϑ <1, the error estimate 237

‖u−Tnu‖1 � n−ϑq |||eψu|||ϑ ,1. (40)

The proof utilizes that the spaces Hϑ ,1
mix , 0<ϑ <1, are interpolation spaces between 238

the spaces H1 = H0,1
mix and H1,1

mix. 239

We conclude that for the case of the solutions u of the Schrödinger equation 240

the H1-error ‖u−Tnu‖1 tends faster to zero as n−ϑq for any ϑ < 3/4. An estimate 241

directly based on an estimate of their K-functional even shows that 242

‖u−Tnu‖1 �
√

ln(n) n−3/4q (41)

so that up to the logarithmic term only the factor 3/4 gets lost compared to the case 243

of full mixed regularity. The estimate is optimal, at least up to the logarithmic factor, 244

and can in general not be improved further. 245
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