
A Multi-Stage Preconditioner for the Black Oil
Model and Its OpenMP Implementation

Chunsheng Feng1, Shi Shu2, Jinchao Xu3, and Chen-Song Zhang4

1 Introduction

A significant portion of our energy needs is met using oil and gas, and mathemati-
cal models of flow through porous media play an important role in developing and
managing oil and gas reservoirs. Highly sophisticated mathematical and computa-
tional methods that describe compressible multi-phase multi-component fluid flow
in reservoirs are crucial for optimizing oil reservoir development. Numerical solu-
tions of these highly nonlinear coupled partial differential equations (PDEs) require
moderate to sophisticated algorithms and computing platforms.

When a reservoir’s pressure drops below bubble-point pressure, the hydrocarbon
phase splits into a liquid (oil) phase and a gaseous (gas) phase at the thermodynami-
cal equilibrium. Under these conditions, the flow in the porous media is of the black
oil type: the water phase does not exchange mass with the other phases, and the
liquid and gaseous phases exchange mass with each other. This model is referred to
as the black oil model and is often applied in primary and secondary oil recovery.
In this paper, we will consider a numerical solution of the black oil model, although
the methods discussed here can be extended to other models.

We propose an algorithm for solving the Jacobian system Ax = b arising from the
fully implicit method, which is the most popular method for the black oil model (see
[8]). The proposed method constructs an efficient preconditioner using the frame-
work in [14]. We will focus on the multithread implementation of this method in
modern multicore computer environments. In order to facilitate the discussion and
emphasize the main points, we will use a simplified version of the algorithm.

Obtaining a solution of a large-scale reservoir simulation is challenging. The
Jacobian system resulting from the Newton linearization is usually large, sparse,
highly nonsymmetric, and ill-conditioned. However, the Krylov subspace methods,
such as BiCGstab and GMRes, are efficient iterative methods for these linear sys-
tems (see [21]). In order to solve a linear algebraic system of equations efficiently,
a preconditioner is often necessary to accelerate a Krylov subspace method. A pre-
conditioner is an approximation to A−1, and its action on a vector should be easy
to compute. The preconditioners used in reservoir simulators mainly fall into two

School of Mathematics and Computational Science, Xiangtan University, China. Email:
spring@xtu.edu.cn · Hunan Key Laboratory for Computation and Simulation in Science and
Engineering, Xiangtan University, China. Email: shushi@xtu.edu.cn ·Department of Mathe-
matics, The Pennsylvania State University, USA. Email: xu@math.psu.edu ·NCMIS & LSEC,
Academy of Mathematics and System Sciences, China. Email: zhangcs@lsec.cc.ac.cn.

1

2 C. Feng, S. Shu, J. Xu and C.-S. Zhang

categories: (i) purely algebraic preconditioners and (ii) preconditioners based on the
different properties of the variables.

Category (i) includes block incomplete lower-upper factorization (BILU) meth-
ods [17, 10], nest factorization [3, 4], and SVD-reduction methods [24]. Category
(ii), on the other hand, includes methods based on the understanding that pressure
variables and saturation variables differ from each other in regard to analytic proper-
ties; representative examples are the combinative method [6], the constrained pres-
sure residual (CPR) method [23], and several multi-stage methods [2, 16, 15, 22].
As a key component of these preconditioners, algebraic multigrid (AMG) meth-
ods [7, 20, 12] have also been applied.

There is a trend toward using multicore processors, which helps CPU design-
ers to avoid the high power-consumption problem that comes with increasing chip
frequency. As CPU speeds rise into the 3–4 GHz range, the amount of electrical
power required is prohibitive. Hence, the trend toward multicore processors started
and will continue into the foreseeable future. OpenMP is an application program in-
terface that can be used to explicitly direct multicore (shared memory) parallelism.
It is a specification for a set of compiler directives, library routines, and environ-
ment variables that can be used to specify shared memory parallelism in Fortran
and C/C++ programs.

Several difficulties can arise when using multithread implementation for precon-
ditioned Krylov subspace methods: (i) Some preconditioners use sequential algo-
rithms, like Gauss-Seidel; (ii) OpenMP programs sometimes require more memory
space than their corresponding sequential versions do. When a numerical algorithm
is implemented in OpenMP or any other multithread computer language, it is im-
portant to maintain the convergence rate of the corresponding sequential algorithm.
However, this is not always possible as many numerical algorithms are sequential in
nature. When working with sparse matrices in compressed formats, like the Com-
pressed Sparse Row format, we sometimes need to introduce auxiliary memory
space. This becomes an increasingly heavy burden as the number of threads in-
creases. We will analyze the parallel interpolation and coarse-grid operators in the
setup phase of AMG based on the fact that the coefficient matrices A we consider
are banded. Our results will offer a basis for reducing memory costs.

The rest of the paper is organized as follows: In Section 2, we describe the widely
used black oil model and its fully implicit discretization. In Section 3, we introduce
a simplified version of the preconditioner studied in [14] for the black oil model
and show how this method relates to a few well-known methods such as the CPR
method. In Section 4, we give the implementation details of the proposed precondi-
tioner in the shared-memory architecture using OpenMP. Finally, in Section 5, we
report the results of some numerical experiments conducted in a typical multicore
computing environment.

An OpenMP solver for the black oil model 3

2 The black oil model

The black oil model is developed based on the assumptions that (i) the reservoir is
isothermal, (ii) the flow in porous media has three phases (liquid, gaseous, water)
and three components (oil, gas, water), (iii) mass transfer occurs between the oil
and gas phase, and (iv) no mass transfer occurs between the water phase and ei-
ther the gas or the oil phases. We use lower- and upper-case subscripts to indicate
three phases—water, oil (the liquid phase), and gas (the gaseous phase)—and the
component of each—water, oil, and gas, respectively.

Let φ and k denote the porosity and permeability, respectively, of the porous
medium Ω ⊂R3. For the α-phase (α = w,o,g), let Sα , µα , pα , uα , Bα , ρα , and krα

be the saturation, viscosity, pressure, volumetric velocity, formation volume factor
(FVF), density, and relative permeability, respectively. Moreover, we use Rso to de-
note the gas solubility, and we use QWs, QOs, and QGs

1 to denote the volumetric
production rate of water, oil, and gas, respectively. The mass conservation equations
of the black oil model can be written as follows:

∂

∂ t

(
φ

Sw

Bw

)
+∇ ·

(
1

Bw
uw

)
=

QWs

Bw
, (1)

∂

∂ t

(
φ

So

Bo

)
+∇ ·

(
1

Bo
uo

)
=

QOs

Bo
, (2)

∂

∂ t

[
φ

(
Sg

Bg
+

RsoSo

Bo

)]
+∇ ·

(
1

Bg
ug +

Rso

Bo
uo

)
=

QGs

Bg
+

RsoQOs

Bo
, (3)

where

uα =−kkrα

µα

(
∇Pα −ραg∇z

)
, α = w,o,g (4)

Sw +So +Sg = 1. (5)

Equations (1)–(3) describe the mass conservation of the water, oil, and gas com-
ponents, respectively; (4) is the Darcy’s law for porous media; and (5) represents
the phase saturation balance. Throughout this paper, we assume that the capillary
pressure between each phase is zero, i.e., Pw = Po = Pg = P.

Among the many possible discretization methods for the above model, we con-
sider only the Fully Implicit method (FIM) [11] in which the Newton linearization
is combined with first-order upstream-weighting finite difference spatial discretiza-
tion; for details, see [8, Chapter 8]. For the sake of simplicity and clarity, we make
two more assumptions:

• All three phases are present during the whole simulation period of the black oil
model; i.e., the transition between the two-phase and the three-phase regions is
ignored.

1 The subscript s indicates that these variables are at the standard conditions instead of reservoir
conditions.

4 C. Feng, S. Shu, J. Xu and C.-S. Zhang

• The well flow rate constraints are modeled by the Peaceman model (see [19]),
and they are treated explicitly; i.e., the well constraints do not contribute to the
Jacobian system.

Remark 1 (Phase transition and implicit wells). We note that these two assumptions
are made only so that we can the main ideas of the method as clearly as possible.
In practical implementation, none of these assumptions is applicable: (i) When only
two phases are present in a reservoir grid-cell, we add another primary variable—the
gas solubility Rso or the bubble-point pressure Pb—besides oil pressure and satura-
tion as many other simulators do. (ii) Treating well constraints implicitly is impor-
tant to obtain accurate simulation results in a more stable fashion. When implicit
well constraints are present, we get a bordered coefficient matrix; details on how to
treat them can be found in [14].

We eliminate Sg from (1)–(4) using (5) and plug (4) into (1)–(3). Moreover, we
choose the increments δP, δSw, and δSo as the main solution variables2 and give
the rest of the variables in terms of these main solution variables. In each Newton
iteration, this discretization method gives a Jacobian system of the following type:

A =

A1P A1Sw

A2P A2Sw A2So

A3P A3Sw A3So

 , (6)

where A1P is the pressure block of the water mass conservation equation; the block
matrix [

A2Sw A2So

A3Sw A3So

]
is the saturation block; and A1Sw , A2P, and A3P are the blocks that couple the pressure
with the non-pressure variables.

The coefficient matrix A of the Jacobian system is often large and sparse, and it is
stored in the block compressed sparse row (BCSR)3 format. From this point on, NP
is used to refer to the total number of pressure unknowns and NSw and NSo are the
numbers of the water and oil saturation unknowns, respectively. We further define
NS = NSw +NSo and N = NP +NS.

Remark 2 (Decoupling strategies). The decoupling technique is a preprocessing step
designed to weaken the coupling between different unknowns. There are many pos-
sible options for decoupling, such as Householder transformations, the IMPES-type
method, and the BSD method based on the least square method. Details regarding
the performance of each and a comparison between them can be found in [2, 16], for
example. For the present study, we apply the alternative block factorization (ABF)
strategy introduced by Bank et al. [5] due to its simplicity and reasonable decou-
pling effects. Investigating efficient and robust decoupling strategies is beyond the
scope of this paper.

2 We denote the solution variable as x := [δP,δSw,δSo]
T .

3 This data structure is similar to the compressed sparse row (CSR) format, but each nonzero entry
is a 3×3 sub-matrix in BCSR.

An OpenMP solver for the black oil model 5

3 A multi-stage preconditioner for FIM

It is natural to introduce auxiliary or fictitious problems for different physical un-
knowns and use them to construct a multi-stage (multiplicative) preconditioner. As-
sume that we have the transfer operators ΠP and ΠS from x to the pressure variable
P and the saturations, respectively. Let R be a relaxation or smoother for A. A multi-
stage preconditioner can be defined in Algorithm 1.

Algorithm 1: A multiplicative preconditioner for the black oil model
Step 0. Given an initial guess x

Step 1. x← x+ΠSBSΠ T
S (b−Ax)

Step 2. x← x+ΠPBPΠ T
P (b−Ax)

Step 3. x← x+R(b−Ax)

It is easy to see that this algorithm defines a preconditioner B such that

I−BA = (I−RA)(I−ΠPBPΠ
T
P A)(I−ΠSBSΠ

T
S A). (7)

The choice of auxiliary problems and their corresponding solvers is crucial to the
overall performance of the preconditioner B. The auxiliary problems should pre-
serve the property of the governing equations of each unknown. We expect A1P to
preserve the ellipticity of the pressure equation, and we expect multilevel solvers
like AMG to solve this auxiliary problem efficiently.

To facilitate our discussion on OpenMP implementation in the next section, we
will use a simple version of Algorithm 1, in which we define

ΠP =

[
IP
0

]
∈ RN×NP and ΠS =

[
0
IS

]
∈ RN×NS ,

where IP ∈RNP×NP and IS ∈RNS×NS are identity matrices corresponding to the pres-
sure variables and the saturation variables, respectively. We use one classical AMG
V-cycle [20] as the subspace solver BP, and we apply the block Gauss-Seidel (GS)
method as the subspace solver BS and the relaxation R. For the multithreaded ver-
sion, the usual GS method is replaced by the hybrid GS method.4 This precondi-
tioner is referred to as BMSP in the rest of this paper.

Remark 3 (CPR preconditioner). One well-known special case of Algorithm 1 is the
constrained pressure residual (CPR) preconditioner [23], which can be presented in
the following algebraic form:

BCPR = R(I−AM)+M, (8)

where

4 The standard GS sweep is applied in each thread, and parallel (simultaneous) updating is used
across multiple threads.

6 C. Feng, S. Shu, J. Xu and C.-S. Zhang

M =

[
BP 0
0 0

]
∈ RN×N and BP ≈ A−1

1P is constructed using AMG. (9)

The smoother R is usually defined by the Line SOR smoother or the Incomplete
Factorization methods. BP can often be replaced by one or more AMG cycles. If we
choose ΠP = [IP,0,0]T , then we can rewrite the CPR preconditioner as

I−BCPRA = (I−RA)
(

I−ΠPBPΠ
T
P A
)
, (10)

which has the exact same form of (7) as for A.

Remark 4 (Block triangular preconditioner). Another simple way to construct an
efficient preconditioner is to choose R = 0 in (7). In this case, the resulting precon-
ditioner BTRIG can be viewed as a block upper triangular preconditioned with BP as
an approximated A−1

1P and BS as an approximation of [A2Sw ,A2So ;A3Sw ,A3So]
−1. The

preconditioner, therefore, is an inexact version of the block GS method.

4 Implementation details in OpenMP

In this section, we discuss an OpenMP implementation of the proposed auxil-
iary space preconditioner in Algorithm 1. Using a shared-memory paradigm can
greatly simplify the programming task compared to message-passing implementa-
tions. OpenMP parallel programs are relatively easy to implement, as each proces-
sor has a global view of the entire memory. Parallelism can be achieved by inserting
compiler directives into the code to distribute loop iterations among the processors.
However, performance may suffer from the poor spatial locality of physically dis-
tributed shared data [18].

In this paper, we will not discuss general tasks such as sparse-matrix multiplica-
tions for OpenMP. Interested readers are referred to Oliker et al. [18] and references
therein for related discussions. We will focus on one part of our algorithm, namely
the setup stage of the classical AMG method and propose a simple but efficient
algorithm for constructing standard prolongation and coarse-level operators using
OpenMP. We show that if the bandwidth of the sparse coefficient matrix A is rela-
tively small, then much less memory is needed.

Suppose A ∈ Rn×n is symmetric. Let GA(V,E) denote the graph of the matrix
A where V is the set of vertices (i.e., unknowns), and let E be the set of edges
(i.e., connections that correspond to nonzero matrix entries). Suppose the index set
of vertices V is split into a set C of coarse-level vertices and a set F of fine-level
vertices, such that

V =C∪F and C∩F =∅,

and we denote nc as the cardinality of C, i.e., the number of C-vertices. Assume that
FC is the map from F-vertices to C-vertices.

An OpenMP solver for the black oil model 7

We define Ni := { j ∈V : Ai j 6= 0, j 6= i}, and for θ ∈ [0,1) we denote

Si(θ) :=
{

j ∈ Ni : −Ai j ≥ θ ·max
k 6=i

(−Aik)

}
.

Let DF,s
i := Si(θ)∩F , DC,s

i := Si(θ)∩C and Dw
i := Ni \

(
DC,s

i ∪DF,s
i

)
. We can now

define

Fi :=
{

j ∈ DF,s
i : i and j without the same depended C-vertices

}
.

Let Âi j := 0 if AiiAi j > 0, and let Âi j := Ai j otherwise. We denote P = (Pi jc)∈Rn×nc

as the standard prolongation matrix where entry

Pi jc =


−1

Aii+ ∑

k∈Dw
i ∪Fi

Aik

(
Ai j + ∑

k∈DF,s
i \Fi

AikÂk j

∑

m∈DC,s
i

Âkm

)
, i ∈ F, j ∈ DC,s

i , jc = FC[j],

1.0, i ∈C, jc = FC[i],

0.0, otherwise.

As the matrix P is sparse and stored in the CSR format, we need to use an auxil-
iary integer marker called MP to quickly locate the column index of each non-zero
entry (see for example in BoomerAMG of hypre [1]). In fact, to generate the i-th
row of P, we define that, for 0≤ j ≤ n−1,

MP[j] :=


J jc , j ∈ DC,s

i , jc = FC[j],

−2− i, j ∈ DF,s
i \Fi,

−1, otherwise,

(11)

where J jc is the position of Pi jc entry in the column index array of the CSR storage
of P. In the OpenMP implementation, we have to allocate the marker MP for all
OpenMP threads. The length of each MP is n, and the total length of MP for all
threads is then NT ×n where NT is the total number of OpenMP threads. When NT
is large, the memory cost for MP is considerable.

Assume that bn = bl + br is the bandwidth of A, where bl and br are the left
and right bandwidths for matrix A, respectively. When the parallel partition of V
is continuously distributed in a balanced fashion to each OpenMP thread (i.e., the
size difference between each thread does not exceed one), we can easily see that
the length of MP that is actually used is much smaller than n (Fig. 1). Taking into
account that the matrix is banded, we can get the following estimates of the length
Lt

P and the minimal offset Mt
l (P)[13]:

Lt
P ≤min(n,

n
NT

+2bn) and Mt
l (P)≥max

(
0,

n
NT

(t−1)−2bn
)
. (12)

The coarse grid operator for the multigrid method can be built using the Galerkin
relation Ac = (Ac

i j)nc×nc := PT AP, where

8 C. Feng, S. Shu, J. Xu and C.-S. Zhang

+

+

+

+

MP

+

+

bl

br

Ai1i1

Ai1j1

Ai3i3

Ai3j3

Ai2i2

Ai2j2

Ai4i4

Ai4j4

+

+

t-th

+

M t
u(P)M t

l (P) M̃P

An×n

Fig. 1 Construction of the prolongation operator P for the banded sparse matrix A. Here, Mt
l (P)

and Mt
u(P) are the lower and upper column indices, respectively, of the non-zero entries in A of the

t-th OpenMP thread.

Ac
i j = ∑

k1

∑
l1

Pk1iAk1l1Pl1 j, i, j = 1, · · · ,nc. (13)

Similar to the implementation of the prolongation operator, we need to allocate two

P T
l1l1

P T
l1k1

P T
l2l2

P T
l2,k2

+

+ +

t-th

Ak1k1

Ak1m1

Ak2k2

Ak2m2

+ +MA

M t
l (A) M t

u(A)M̃A

Pm1m1

Pm1n1

 Pm2m2

Pm2n2

M t
l (P) M t

u(P)M̃P

+ +MP

P T
nc×n

An×n Pn×nc

Fig. 2 Construction of the Galerkin coarse-level operator Ac = PT AP. Here, Mt
l (A) and Mt

u(A) are
the lower and upper column indices of the non-zero entries in A of the t-th OpenMP thread.

auxiliary arrays called MA and MP (Fig. 2). The length of MA is n and the length of
MP is nc. By taking into account the characteristic of the banded sparse matrices of
the coarse operator, we can get the estimation formula for MA and MP. The actual
length Lt

A and the offset Mt
l (A) can be calculated using

Lt
A ≤min(n,

n
NT

+2bn) and Mt
l (A)≥

n
NT

t−bn. (14)

An OpenMP solver for the black oil model 9

Remark 5 (How much memory can we save?). If we do not consider the possibility
that the bandwidth of A can be much smaller than n, then we will need two auxiliary
arrays with length nNT . However, as noted above, we only need two arrays of length
n+ 2bnNT . When n� bn and NT is relatively large, we can save a lot of memory
by using these improved estimates. In fact, this will reduce not only storage cost but
also the time needed to allocate and initialize memory.

5 Numerical experiments

In this section, we design several numerical experiments and analyze the perfor-
mance of OpenMP implementation of the preconditioner proposed in Section 3. We
use a HP desktop PC equipped with two Intel Xeon X5676 (3.07GHz, 12 cores) and
96GB RAM. The experimental environment is Cent OS 6.2 and GCC 4.4.6 (with an
“–O2” optimization parameter).

Our example is adapted from the second data set of the Tenth SPE Comparative
Solution Project ([9]), which is designed to compare the ability of upscaling ap-
proaches used by various participants to predict the performance of water-flooding
in a simple but highly heterogeneous black oil reservoir described by a fine-scale
(60×220×85) regular Cartesian geological model. This model has a simple geom-
etry, with no top structure or faults. The model dimensions are 1200× 2200× 170
(ft). The top 70 ft (35 layers) represents the Tarbert formation, and the bottom 100 ft
(50 layers) represents the Upper Ness formation. There is one injector in the center
of the field and a producer located at each of the four corners. The total simula-
tion time is 2,000 days. The purpose of this benchmark is to compare the models in
regard to accuracy and computational cost.

For our purpose, we modify the SPE10 example as a three-phase black oil test by
changing the properties of the fluid. Hence, the total number of unknowns of each
Jacobian system is N = 3.3M and the size of the pressure equation is n=NP = 1.1M.
We employ the GMRes method as our iterative solver for solving linear Jacobian
systems. The stopping criteria is that the relative residual in the Euclidian norm
is less than 10−4. In Table 1, we summarize the performance of our simulator, in
which #Timesteps is the total number of time steps, #Newton is the total number of
Newton iterations, #Linear is the total number of linear iterations, Solver Time is
the total wall-time for the linear solution steps, Aver. Newton is the average number
of Newton iterations in each time step, and Aver. Linear Iter is the average number
of linear iterations in each Newton iteration.

Table 1 Performance of preconditioned GMRES for solving the three-phase SPE10 problem.

Preconditioner #Timesteps #Newton #Linear Solver Time (hour) Aver. Newton Aver. Linear Iter
BMSP 736 997 32829 6.60 1.35 32.92
BCPR 796 1253 57723 20.15 1.57 41.50
BTRIG 805 2045 103249 17.47 2.54 46.34

10 C. Feng, S. Shu, J. Xu and C.-S. Zhang

In order to further demonstrate the performance of the proposed preconditioner,
we select four typical Jacobian linear systems from different periods of the 2,000
days of simulation. They are all from the first Newton iteration in different time
levels and the time step sizes are the same (each is five days). Using these exam-
ples, we test the performance of the three different preconditioners, BMSP, BCPR,
and BTRIG, given in Section 3. The proposed preconditioner in Algorithm 1 results
in various preconditioners depending on the different choices of auxiliary problem
solvers/smoothers. In this section, we only compare the performance of these three
simple choices.

The total number of iterations and the wall-time in seconds for each of these
methods is reported in Tables 2–4, in which NT is the total number of OpenMP
threads. Moreover, the respective OpenMP speedup for these methods are listed
along with the wall-times. We observe that these three methods are very robust for
the test problems and that their OpenMP versions can deliver about three times
speedup compared with the corresponding serial versions. Furthermore, the numer-
ical tests show that each component, BS, BP, and R, plays a role such that dropping
any of them would result in at least 20% to 30% performance lost in CPU time.
And, for more difficult problems, this drop is expected to be more severe.

Table 2 Number of iterations, wall-times (seconds), and OpenMP speedups of BMSP.

1st 2nd 3nd 4nd
NT #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup
1 32 31.34 — 34 32.79 — 34 32.77 — 32 31.49 —
2 32 17.72 1.77 34 18.48 1.77 34 18.46 1.78 32 17.68 1.78
4 32 13.44 2.33 34 13.19 2.49 34 13.14 2.49 32 12.60 2.50
8 33 11.02 2.84 34 11.20 2.93 34 11.18 2.93 32 10.80 2.91
12 33 10.99 2.85 34 11.27 2.91 34 10.84 3.02 32 10.77 2.92

Table 3 Number of iterations, wall-times (seconds), and OpenMP speedups of BCPR.

1st 2nd 3nd 4nd
NT #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup
1 45 39.01 — 45 38.90 — 43 37.36 — 42 36.56 —
2 45 21.95 1.78 45 21.90 1.78 43 21.00 1.78 42 20.67 1.77
4 45 15.42 2.53 45 15.44 2.52 44 15.19 2.46 42 14.56 2.51
8 45 13.12 2.97 45 13.09 2.97 44 12.86 2.90 42 12.35 2.96
12 45 13.19 2.96 45 13.18 2.95 43 12.66 2.95 42 11.93 3.07

Finally, we test the memory cost for the AMG setup stage, which is crucial in
constructing BP. As discussed in Section 4, the auxiliary arrays introduced to assist
in assembling the sparse matrix could waste a lot of precious memory resources
during the AMG setup stage. And, by using the improved bounds given in (12) and
(14), we are able to use much shorter auxiliary arrays than the standard implemen-
tation in [1] and this can save a lot memory, especially when the bandwidth of the

An OpenMP solver for the black oil model 11

Table 4 Number of iterations, wall-times (seconds), and OpenMP speedups of BTRIG.

1st 2nd 3nd 4nd
NT #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup
1 49 41.69 — 49 41.48 — 48 40.96 — 44 37.75 —
2 49 23.42 1.78 48 22.93 1.81 48 22.87 1.79 44 21.25 1.78
4 49 16.67 2.50 49 16.62 2.50 48 16.30 2.51 44 15.37 2.46
8 49 14.30 2.91 48 13.94 2.98 48 13.91 2.95 44 12.92 2.92
12 48 14.00 2.98 48 13.99 2.97 47 13.58 3.02 44 12.99 2.91

sparse matrix A is small or the number of OpenMP threads is large. Let Length(MP)
be the total length of MP, and let Length(MA) be the total length of MA. We compare
these two auxiliary arrays (MA and MP) on the finest level as an example in Table 5.
Numerical results show that this simple improvement can save about 87% storage
when 12 threads are used on the finest level.

Table 5 Auxiliary memory storage on the finest level of the AMG setup for the pressure equation.

Length(MP) Length(MA)
NT NT ×n LP Saving (%) NT ×n LA Saving (%)
2 2,188,844 1,200,022 45.1 2,188,844 1,147,222 47.6
4 4,377,688 1,305,622 70.2 4,377,688 1,252,822 71.3
6 6,566,532 1,411,222 78.5 6,566,532 1,358,422 79.3
8 8,755,376 1,516,822 82.7 6,566,532 1,464,022 83.3
12 13,133,064 1,728,022 86.8 13,133,064 1,675,222 87.2

Acknowledgements The authors appreciate the anonymous referee for his or her suggestions
which led to a better presentation of our method. The authors would like to thank RIPED,
PetroChina, for providing the modified SPE10 test. Feng is partially supported by NSFC Grant
11201398. Shu is partially supported by NSFC Grants 91130002 and 11171281 and by the Sci-
entific Research Fund of the Hunan Provincial Education Department of China #12A138. Xu is
partially supported by NSFC Grant 91130011. Zhang is partially supported by the Dean’s Startup
Fund, Academy of Mathematics and System Sciences and by NSFC Grant 91130011.

References

1. hypre: A scalable linear solver library. URL https://computation.llnl.gov/
casc/linear_solvers/sls_hypre.html

2. Al-Shaalan, T., Klie, H., Dogru, A., Wheeler, M.: Studies of Robust Two Stage Preconditioners
for the Solution of Fully Implicit Multiphase Flow Problems. In: SPE Reservoir Simulation
Symposium (2009)

3. Appleyard, J., Cheshire, I.: Nested factorization. In: SPE Reservoir Simulation Symposium
(1983)

4. Appleyard, J., Cheshire, I., Pollard, R.: Special techniques for fully implicit simulators. In:
Proceedings of the European Symposium on Enhanced Oil Recovery, Bournemouth, England,
pp. 395–408 (1981)

12 C. Feng, S. Shu, J. Xu and C.-S. Zhang

5. Bank, R.E., Chan, T.F., Coughran Jr., W.M., Smith, R.K.: The alternate-block-factorization
procedure for systems of partial differential equations. BIT 29(4), 938–954 (1989)

6. Behie, A., Vinsome, P.: Block iterative methods for fully implicit reservoir simulation. Old
SPE Journal 22(5), 658–668 (1982)

7. Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG) for sparse matrix equations.
In: Sparsity and its applications (Loughborough, 1983), pp. 257–284. Cambridge Univ. Press,
Cambridge (1985)

8. Chen, Z., Huan, G., Ma, Y.: Computational methods for multiphase flows in porous media,
vol. 2. Society for Industrial Mathematics (2006)

9. Christie, M., Blunt, M.: Tenth SPE Comparative Solution Project: A Comparison of Upscaling
Techniques. SPE Reservoir Evaluation & Engineering 4(4), 308–317 (2001)

10. Concus, P., Golub, G., Meurant, G.: Block preconditioning for the conjugate gradient method.
SIAM J. Sci. Statist. Comput 6(1) (1985)

11. Douglas, Jr., J., Peaceman, D.W., Rachford, D.: A method for calculating multi-dimensional
displacement. Transaction of American Institute of Mining, Metallurgical, and Petroleum
Engineers 216, 297–306 (1959)

12. Falgout, R.: An introduction to algebraic multigrid. Computing in Science and Engineering
8(6), 24 (2006)

13. Feng, C., Shu, S., Yue, X.: An Improvement for the OpenMP Version BoomerAMG. In:
Proceedings of CCF HPC CHINA 2012, Zhangjiajie, China, pp. 321–328 (2012)

14. Hu, X., Liu, W., Qin, G., Xu, J., Yan, Y., Zhang, C.: Development of a fast auxiliary subspace
pre-conditioner for numerical reservoir simulators. In: SPE Reservoir Characterization and
Simulation Conference (2011)

15. Lacroix, S., Vassilevski, Y., Wheeler, J., Wheeler, M.: Iterative solution methods for modeling
multiphase flow in porous media fully implicitly. SIAM J. Sci. Comput. 25(3), 905–926
(electronic) (2003)

16. Lacroix, S., Vassilevski, Y.V., Wheeler, M.F.: Decoupling preconditioners in the implicit paral-
lel accurate reservoir simulator (IPARS). Numer. Linear Algebra Appl. 8(8), 537–549 (2001).
Solution methods for large-scale non-linear problems (Pleasanton, CA, 2000)

17. Meyerink, J.: Iterative methods for the solution of linear equations based on incomplete block
factorization of the matrix. In: SPE Reservoir Simulation Symposium (1983)

18. Oliker, L., Li, X., Husbands, P., Biswas, R.: Effects of Ordering Strategies and Programming
Paradigms on Sparse Matrix Computations. SIAM Review 44(3), 373–393 (2002)

19. Peaceman, D.W.: Presentation of a horizontal well in numerical reservoir simulation. In: The
11th SPE Symposium on Reservoir Simulation, SPE 21217 (1991)

20. Ruge, J.W., Stüben, K.: Algebraic multigrid. In: Multigrid methods, Frontiers Appl. Math.,
vol. 3, pp. 73–130. SIAM, Philadelphia, PA (1987)

21. Saad, Y.: Iterative methods for sparse linear systems, second edn. Society for Industrial and
Applied Mathematics, Philadelphia, PA (2003)

22. Stueben, K., Clees, T., Klie, H., Lu, B., Wheeler, M.: Algebraic multigrid methods (amg) for
the efficient solution of fully implicit formulations in reservoir simulation. In: SPE Reservoir
Simulation Symposium (2007)

23. Wallis, J.: Incomplete gaussian elimination as a preconditioning for generalized conjugate
gradient acceleration. In: SPE Reservoir Simulation Symposium (1983)

24. Watts, J., Shaw, J.: A new method for solving the implicit reservoir simulation matrix equa-
tion. In: SPE Reservoir Simulation Symposium, 31 January-2 Feburary 2005, The Woodlands,
Texas (2005)

