Conservative inexact solvers for porous media
flow
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Abstract The governing equations for flow and transport in porous meadt de-
rived assuming conservation of mass. To ensure stabilithetimulations signif-
icant attention is given to ensure that the discrete systgains the conservation
property. Due to discretization errors and parameter daicgy it is natural to con-
sider an inexact solution strategy for the resulting systéraquations. However
most linear solvers are not designed by the same princigléiseaunderlying dis-
cretization and will thus not produce inexact solutiond fhr@serve the conserva-
tion property. In this work we illustrate how inexact yet senvative linear solvers
can be realized for porous media applications. The linelwesds formulated as a
multi-level control volume methods and produces a consee/élux field for all
approximated solutions.
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1 Introduction

Simulation models of flow and transport in geological pormexlia are character-
ized by a high degree of uncertainty due to both discretimagirors and incomplete
measurements of physical parameters. In the context @frls@vers this seemingly
mandates the use of inexact strategies, where a soluti@mughswith an accuracy
similar to that of the overall computational model. Since slolution of linear sys-
tems often consumes a substantial part of the total sinonlditne, inexact solvers
can yield considerable computational savings. Howeveddéhiwation of the contin-
uous model is based on conservation of mass, and this pyapest be preserved
in the discrete system for the results to be physically mregual. The discretization
schemes commonly applied are conservative by constrydiigrunless the linear
solver is designed specifically to produce solutions thagndf inexact, conserve
mass the inexact solution may not yield a stable overall Eitimn strategy. For this
reason linear systems are commonly solved to an accuratig tfmaich higher than
mandated by known discretization errors and parametertaicges.

The key to producing physically meaningful inexact solngids to design the
linear solver by the same principles as the discretizatdese. Herein we will
explore these ideas in the context of two-phase flow in a boté porous media.
The phases denoted watr) @nd oil (0) are immiscible and incompressible with a
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velocity given by Darcy’s law
Ug = —AqK0Op, o =Ww,o0. (2)

Here the phase mobilitiek, andA,, represent fluid viscosity and rock-fluid inter-
action. Furthermor& is the permeability ang is the fluid pressure. Of particular
importance to this paper are the properties of the pernigabilhich commonly
possesses sharp contrasts of several orders of magnitddspatial correlation
structures on a continuum of length scales. Conservatianasfs for each phase
is expressed as

0&
(T
where @ represents porosityg, is the volume fraction of phase andqy is the
source term. The saturations are assumed to fill the porenglthat isS, + S = 1.
Thus when (2) for the two phases are added to get an equati@origervation of
total mass, the saturations are eliminated. This givesatialliptic equation for the
pressure, which can be written

+D'Ua:%{a a=w,o, (2)

D'UT:_D'()\TKDp)ZQT- (3)

Here ur = uy + U, is the total velocityAt = Ay + Ao is the total mobility and
qr = gw + Qo is the total source term.

2 Discretization

In the rest of the paper we describe the construction of axastdinear solver for
(3) which preserves the conservation propertyuef The solver is formulated in
terms of a novel multi-level control volume method which igely described next.
More details can be found in [6].

2.1 A hierarchy of control volume discretizations

In applications conservation of mass is considered an Bakproperty that should
be preserved during discretization. To that end a cell cedteontrol volume
method is applied for the spatial discretization. A disei@arcy’s law is constructed
asin[1]

Ung = —Ag ThPh, 4)

whereup, o is the discrete phase velocities for phaseTy, is a matrix of transmis-
sibilities andpy, is a cell centered approximation of the pressure. The ntiglsii
Ay, are discretized by phase-wise upstream weighting. A elis@quation for the
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pressure is found by

Dh((Aw +Ag ) ThPh) = AnPh = G, (5)

whereDy, is the discrete divergencay, is the system matrix ang}, represents dis-
crete sources. We note that (5) can be considered a Petlevk{Badiscretization
of (3), with piece-wise constants on the cells as test fonstiand shape functions
defined by the specific control volume method. When (5) has selerd forp;, (2)
for the water phase is discretized by an explicit method witstream weighting of
the mobilities.

The sharp contrasts and long correlation structures oféha@ability is reflected
in the discretization matri¥,, thus solving (5) is time consuming. Discretization
errors and uncertainties in the permeability make the tingstem a prime candidate
for an inexact linear solver. However, (5) was derived byurgng conservation of
mass, and unless this is reflected in the inexact solutiomserwation errors will
in worst case grow exponentially in the time propagation)f The linear solver
should therefore be constructed to produce a discrete fligktFiat, even if inexact,
satisfies (5). Furthermore an efficient solution strategy%p should invoke coarse
solvers to account for the global dependencies of the emuati

An inexact two-level method which retains the conservagimperty can be real-
ized within the framework of the multiscale finite volume (M%) method [3], see
also [7]. The domain is partitioned into a coarse grid and & s® shape function
Yy is constructed for each coarse cell to account for fine-seai@bilities in the
permeability. Coarse test functiongs are defined as piece-wise constants on the
coarse cells. A coarse linear system is then defined as

(DL AL ) P = A pr = D gh. (6)

Here @&y and ¥, are column matrices of test and shape functions, respggtive
and Ay is the coarse discretization. It is important to note theilaiity between
(5) and (6), in that both are obtained by applying Petrove@ah techniques. In
this way the coarse linear system retains the conservatapepy of the fine-scale
discretization. Specifically it will produce conservativearse fluxes in the sense
that the fluxes into a coarse cell match the sources withiceleWhen projected
to the fine scale the inexact fluxes will not be conservatives s remedied by a
post-processing step where local fine-scale problems &redswithin each coarse
cell [3]. The boundary conditions are the projection of theservative coarse fluxes
to the fine scale.
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2.2 Multi-level flux post-processing

The two-level method outlined above amounts to an inexaegli solver that can
also be applied as a preconditioner within an iterativeesolMowever it is natural
to seek multi-level methods to realize efficient residuabething strategies. Also
when multiple grid levels are available, adaptive upscgtian be applied during the
simulation. Finally, the MSFV method is known to be unstahleases where the
coarse grid does not follow anisotropy patterns in the pabitigy [5]. This can be
remedied by an unstructured coarsening strategy thatrisrdly under development
but for this approach to be robust multiple coarsening steifis mild upscaling
ratios should be applied.

Since (6) has the same properties as (5) in terms of spargitgrp and con-
servation property, a further coarsening of the system eaityebe constructed by
recursion. However, for the multi-level method to be amdlie as a conservative
inexact linear solver, multi-level post-processing isdext and specifically local
Neumann problems must be solved. For the coarser levelsdtietization of Neu-
mann boundary conditions is not available, and this hasawtjwe limited control
volume linear solvers to two grid levels. In the following wal outline how the
multi-level post-processing can be realized, a thorougthegation is given in [6].

As for the two-level method, the post-processing is peréatray solving local
problems that are confined to single cells on the coarsel. id¥leen conservative
fluxes on coarse faces are known these can be mapped to anjefiekvia the
shape functions, specifically they can be mapped one lewehdo form bound-
ary conditions for the local problems. In this way the fluxcdétization on coarse
boundaries is replaced by known fluxes. However there wifelses interior to the
coarse cell with exterior cells in their flux discretizatjam conflict with the goal of
a local post-processing. The exterior cells are eliminaiedonsidering groups of
cells that are centered around vertexes on the boundarg afoiérse cell and have
common support for their basis functions, as illustrateBig 1. The exterior cells
can be replaced by the known fluxes over the boundary by fatingl and solving
a local linear system. When the number of exterior cells apchtimber of known
fluxes are equal, the elimination is straightforward. Ifrehare more exterior cells

Fig. 1 Parts of cells with Uz

common support for their ba- 2
sis functions centered around uy

a vertex at the boundary of
a coarse cell. Fluxes (ar-
rows) and cells close to the
boundary of a coarse cell
(bold). Cells 3-5 are outside
the coarse cell and must be us
eliminated from the flux ex-

pression for, usingu; and 5 4

usz (which are known) and

their sub-fluxes.
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than there are boundary conditions (respectively 3 and &ginlf, additional equa-

tions can be obtained by splitting the boundary fluxes intefiuxes on a finer grid

level and computing higher order moments of the fluxes baséldese. Note that on
the finest level the elimination is straightforward sincecardary discretization is
available there; thus the splitting into sub-fluxes is al@d# when needed. A linear
system is then solved around all vertexes on the boundagiythenresults are used
to formulate a local system within the coarse cell that isewito get conservative
fluxes.

This methodology provides conservative fluxes for all facesall grid levels
even if the accompanying pressure is inexact. We make tworats on the ap-
proach: firstly the only pair of pressure and fluxes whichséas both the dis-
crete flux law (4) and the conservation equation (5) is thetesalution. The post-
processed fluxes possess the conservation property, utdimaot be computed
from the inexact pressures via (4). The post-processedsfleae be thought of as
being exact for a modified permeability field, in accordandé @n uncertainty in
this parameter. Secondly the post-processing is not aipéainless the inexact so-
lution preserves the conservation property of the contisymoblem. This not only
requires the construction of coarse problems as describ@cbabut also a careful
treatment of the right hand side of the linear system. To leeiip, the right hand
side should be coarsened according to the Schur complementifation of the
multi-level method [8]. The multi-level method with thisespal coarsening can be
applied as a correction to the residual of any inexact smiufihe corrected solution
will in general still be inexact, but it will possess the stiwre necessary to apply
the post-processing.

2.3 Error control

With the post-processing outlined above, we can obtairtisolsithat are inexact but
still honor the conservation property. There are two natrigeria for controlling
the linear solver. The simplest option is to terminate terations when a desired re-
duction of the relative residual is achieved and then appstprocessing to obtain
a mass conserving flux field. However, even though the pastegsing produces a
velocity field without conservation errors a reduction of tielative residual gives
little control of the accuracy of the fluxes. A more nuancetiamof error can be
derived from [4], where we find the expression

IIK‘l/Z(U*U’ﬁ)IISinflIIK‘l/Z(UFQ*KDS)IH sup  (O-(u—up),B), (7)
seH BeHL|B=1|

whereu is the true flux andij; is the post-processed flux field. The last term eval-
uates to zero since the post-processed and exact fluxeshesarne divergence.
The triangular inequality applied on the first term gives
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IK=Y2(u—uf) || < 1K ~Y2(uf, — K Opp) | +SLHJ1IIK1/ZD(DE—S)H, ®)

with pj; representing the inexact pressure. The first term on thé highd side of
(8) is immediately computable, and can be interpreted asittoe stemming from
the linear solver. We denote this telys. The second term is identified as the dis-
cretization error, denoteg)y. To give reasonable estimates for the gradiergioin
heterogeneous media, we compute this from face presswaearth reconstructed
from the fine-scale discretization. The estimate (8) canleyeg to control the lin-
ear solution process by terminating the iterations whenether from the linear
solver is smaller than the discretization error, at whicmpid can be argued that it
makes little sense to improve the inexact solution.

3 Numerical results

In this section we illustrate the utility of the conservativamework by coupling an
inexact multi-level linear solver for the pressure equatim a non-linear transport
problem. The computational grid is Cartesian, withcglls in each direction. The
permeability is taken from the bottom layer of the 10th SPEgarative solution
project (SPE10) [2], which is characterized by long and lyigtermeable channels
and sharp contrasts of 6 orders of magnitude. The mediuntialynfilled with oil.
Water is injected in the lower left corner of the grid, and adurction well is placed
in the middle of the domain.

The phase velocities in (4) are discretized on the fine-gyadeby a two-point
flux approximation. Periodic boundary conditions are assitfor simplicity. Three
levels of coarsening are applied, each with a ratio of 3 ilnel@ction, and a direct
solver is invoked on the coarsest grid. Thus the coarse tgpezanstitutes a four-
level multi-grid method. Updates of the saturation feedktiathe pressure equation
via the mobilities, which are set t, = S, and A, = 105, and thus the velocity
field must be updated regularly. The pressure time step id éika tenth of the total
simulation time, while the time step for the saturation eiumis decided by the
CFL criterion.

To solve the pressure equation, GMRES iteration precamditl by the multi-
level method is applied. Four criteria for terminating therative solver are con-
sidered: Two consider the reduction of the relative redjdgiaand terminate the
iterations where < 5-10~° ande < 10>, respectively. The third criterion requires
thate s < g, which in this case corresponds to a valuesadf 106 — 10-8. All
these estimates apply post-processing to ensure the apyaitex flux field is con-
servative. Finally, we consider a solver with the same prditmner, but where
post-processing is not applied after the iterations. Is ta@se the fluxes must be
brought sufficiently close to being conservative by itergton the solution. Note
that this is the strategy applied by a traditional lineawsplFor the present setup,
a value ofs < 10 1% is needed to avoid severe stability issues due to consenvati
errors.
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() as<eg (d) £ <1071, no p.p.
Fig. 2 Saturation profiles obtained with different stopping ciéefor the linear solvers. Water
(light) is injected into a domain initially filled with oil (d&). Injection (O) and production (X)
wells are marked in (a). Periodic boundary conditions ardiegp

Table 1 Total number of GMRES iterations needed to achieve desiredainte level.

£<5.10°° £<10° as<ey £<10719 nop.p.
190 200 212 293

Snapshots of the saturation distributions with the respecbntrol parameters
are shown in Fig. 2. All simulations predict the same largales pattern, and it is
only the loosest tolerance for the pressure solver thatlyiebtable differences in
the saturation profile. The computational gains from apgypost processing can
be seen from the number of iterations shown in Tab. 1. We wbghat there is
considerable room for computational savings without $iaarg significant accu-
racy of the transport solution. We reiterate that this is thuthe post-processing,
which facilitates inexact yet conservative flux fields. Saraation is needed when
deciding the stopping criterion for the linear solver asabeuracy necessary to get
reasonable transport solution is highly dependent on thalation setup. Note that
if the post-processing is not applied the accuracy to preduitux field that makes
the transport solver behaves stable increases signifycditite tolerance necessary
will be different for other simulations, and in practice thely options to obtain
stable simulations are to iterate until the exact solut®rfiound, or to apply an
inexact solver and somehow tackle conservation errorsarirdnsport solver. We
also remark that the performance of all preconditionertessifrom the Cartesian
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coarse grids that leads to strong heterogeneities witkiicdiarse cells. This will be
amended by an unstructured coarsening procedure currerdbr development.

4 Concluding remarks

In this paper we have considered the application of an inelkaear solver for
porous media flow with the special property that it provideed &f fluxes that
exactly satisfy a conservation law, even if the associatedsure that drives the
flux was approximated. The solver was formulated as a mewtdlcontrol volume
discretization, and we considered the coupling of the sali a non-linear trans-
port problem. Since the approximated flux field possesseddhservation prop-
erty, considerable computational savings were possititeowt sacrificing stability
or significant accuracy in the transport simulation.

For simulation of realistic applications there will always a trade-off between
accuracy and computational effort, and this balance isqudatly well articulated
when control parameters for linear solvers are decided.aVe shown in this paper
that the linear solver should not be considered a standeadart of the overall sim-
ulation tool. Instead it should be in accordance with theesanmnciples as guided
the choice of the disrcetization scheme. The resultingesaohill provide solutions
that even if approximated are physically meaningful, ech@anthe robustness of
the simulator.
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