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1 Introduction

In this paper, we propose a fast parallel solver for the parabolic equation

∂tu= L u+g(x, t), x∈ Ω ,

u= uΓ (x, t) onΓ = ∂Ω , u(x,0) = f (x) on Ω ,
(1)

whereΩ is an open connected subset ofR
2 andL u= ∑i, j ∂xi

(

κi j (x)∂xj u
)

−c(x)u,
with c(x) ≥ 0 andκi j (x) symmetric and uniformly positive definite, i.e., we have
κi j (x) = κ ji (x) for i 6= j and∑i, j κi j (x)ξiξ j ≥ λ ∑i ξ 2

i for all choices ofξi , where the
constantλ > 0 is independent ofx. Our method is based on the predictor-corrector
method introduced by [15]. In that work, the authors consider nonlinear reaction-
diffusion equations posed on branched structures, which model the evolution of
the electric potential in neurons, see Fig. 1. In such problems, the nodal points are
natural separators of the computational domain, meaning that the solution within the
individual branches can be solved independently if the electric potential at the nodes
are known. Based on this observation, the authors proposed the Crank–Nicolson
predictor-corrector (CNPC) method: they first use forward Euler to predict the nodal
values, and then backward Euler to solve for the solution within the branches. To
maintain stability, they then correct the nodal values using a backward Euler step,
and the whole solution is extrapolated to obtain formal second-order accuracy in
time. The main advantage of this method is that a fixed amount of computation is
performed at each time step, and no iteration is necessary. This is unlike classical
domain decomposition (DD) algorithms such as Schwarz methods [3, 14, 11, 1] or
waveform relaxation methods [10, 8, 9, 7], where one must iterate to convergence (or
to some fixed tolerance), and the number of iterations generally increases as the grid
is refined. Thus, a suitable extension of the CNPC method for 2D and 3D problems
can be useful for parallel-in-time methods such as Parareal[13, 6], where fast coarse
integrators are needed. Other DD-type methods with a fixed cost per time step have
been proposed in [4] and [16]; both are only first order accurate under simultaneous
refinement in space and time.

Our main goal is to present in detail a generalization of the CNPC method that
can be used to solve 2D problems with many subdomains in parallel. This is done
in Section 2. In particular, we show how the backward Euler correction step for the
interface can be implemented efficiently, even in cases where the subdomain inter-
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Fig. 1 A branched structure, with nodes indicated.

faces are coupled through cross points. To fix ideas, we have chosen a finite volume
discretization in space, although similar techniques can be used for other discretiza-
tions. In Section 3, we examine the convergence of the CNPC method. We will see
that the method indeed converges as the mesh sizeh → 0 the time stepτ satisfies
τ = O(hα) for α ≥ 1. In fact, the method attains full second order accuracy for
α ≥ 3/2; it is however only first order accurate whenτ = O(h). Finally, numerical
results in Section 4 illustrate the behavior of the method for many subdomains.

2 The CNPC algorithm

To define the CNPC algorithm, we will assume that the domainΩ is divided into
shape regular, quasi-uniform and conforming control volumesVi , i = 1, . . . ,n, with
diameterhi ≤ h, see Fig. 2. If we discretize (1) in space using a finite volume
method, we get a semi-discrete ODE system of the form

M∂tu(t)+Au(t)+BuΓ (t) = Mg(·, t). (2)

Here,u(t) are the unknown values at the nodal points at timet, A∈R
n×n is a sparse,

symmetric positive definite matrix whose entriesai j are non-zero and ofO(1) (con-
stant with respect toh) if and only if volumesi and j are neighbors.B ∈ R

n×nΓ

contains the dependence on the Dirichlet boundary values; its entries are alsoO(1).
uΓ (t) ∈ R

nΓ contains the Dirichlet boundary values at timet. M is a diagonal mass
matrix whose(i, i) entry is the area ofVi ; thus, the elements ofM are of sizeO(h2).
g(·, t) is a vector whose elements are the values ofg at the nodes; we will use this dot
notation to denote the vectors of samples of other functionselsewhere in this paper.

We now divide the unknowns into two subsets, theinterface unknownsV1 and the
interior unknownsV2. We also define two corresponding projectorsX1,X2 ∈ R

n×n

such thatX1u projects ontoV1, i.e., it leaves all the values inV1 unchanged and sets
all the other entries to zero, andX2 does the opposite. Thus, we haveX2 = I −X1 and
X1X2 = X2X1 = 0. Note thatX1 andX2 commute withM, since the latter is diagonal.

We are now ready to define the CNPC algorithm. For a given time-step sizeτ and
an approximationun ≈ u(·, tn), one step of the CNPC method proceeds as follows:

1. Predict the interface values att = tn+1/2 using forward Euler: calculateu∗ using

M(u∗−un)

τ/2
=−X1(Aun+BuΓ (tn))+X1Mg(·, tn+1/2),
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Fig. 2 Decomposition into interface (light and dark gray) and interior (white) cells and their cor-
responding unknowns. Light gray corresponds to edge nodes and dark gray to cross points.

Note thatX2(u∗−un) = 0, so interior node values are not altered by this step.
2. Using the predicted valuesX1u∗ as boundary values, solve foru∗∗ in

M(u∗∗−un)

τ/2
=−X2

[

A(X1u∗+X2u∗∗)+B
(uΓ (tn)+uΓ (tn+1)

2

)

]

+X2Mg(·, tn+1/2),

where bothuΓ (tn) and uΓ (tn+1) are known. This corresponds to a backward
Euler step for the interior unknownsV2; the interface values are not updated.
Note that this step requires solving a linear system with thematrixM+ τ

2X2AX2.
3. Computeun+1/2 by correcting the interface values att = tn+1/2 with backward

Euler, usingu∗∗ as boundary values:

M(un+1/2−u∗∗)
τ/2

=−X1

[

A(X1un+1/2+X2u∗∗)+B
(uΓ (tn)+uΓ (tn+1)

2

)]

+X1Mg(·, tn+1/2).

This is a backward Euler step for the interface nodes, since their values have not
been updated in the previous steps, i.e., we haveX1u∗∗ = X1un. For the other
nodes, we haveX2un+1/2 = X2u∗∗, i.e. we reproduce the values obtained in step
2. Here one needs to solve a linear system with matrixM+ τ

2X1AX1.
4. Extrapolate to obtainun+1:

un+1 = 2un+1/2−un.

Note that there is no iteration to convergence, since each ofthe above is only per-
formed once per time step.

Parallelization. We only need consider how to solve linear systems with matrices
Ai = M+ τ

2XiAXi (i = 1,2) in parallel, since the other operators are local in nature
and easy to parallelize. For the matrixA2 = M+ τ

2X2AX2 (step 2), we note that the
interior nodesV2 are naturally decomposed into disconnected “subdomains” whose
only connections are through the interface nodesV1. Thus,A2 is block diagonal,
with blocks corresponding to subdomains or to individual nodes inV1. As a result,
if we assign each subdomain to its own processor, step 2 can besolved in parallel.
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Next, we need to solve systems involvingA1 = M + τ
2X1AX1 (step 3). This is a

block diagonal matrix whose largest block is of the same sizeasV1, so it is much
smaller than the original system. Also note thatX1AX1 (and henceA1) is sparse,
with nonzero entries corresponding to neighboring interface nodesonly. This is
unlike a Schur complement approach, where the elimination of interior nodes in-
troduces additional connections between non-neighboringinterface nodes. How-
ever, the unknowns corresponding to edges from different subdomains are coupled
through cross points, see Fig. 2, leading to a system that is globally coupled.

We now show how we can overcome this bottleneck by reducing the inter-
face system to an even smaller one that has only as many variables as there are
cross pointsin the domain. LetN be the number of subdomains, i.e., the number
of connected components ofV2. We partition the setV1 of interface nodes into
edges{E1, . . . ,Em} between subdomains andC , the set of cross points, so that

V1 = C ∪
(

∪m
j=1E j

)

. We now permute the blocks ofA1 so that edges are ordered

first and the cross points last. If we letu j be the unknowns corresponding toE j and
v be those belonging to cross points, we get


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






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

=
N
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fi ,

whereE j are sparse matrices corresponding to couplings withinE j , G j are the con-
nections betweenE j and the cross points, andC represents the connections among
cross points themselves (typicallyC = 0). Thef i represent contributions of subdo-
main i to the right-hand side, e.g., contributions from nodes in subdomaini that are
adjacent toE j . Then the Schur complement with respect to the cross points becomes

(

C−
m

∑
j=1

GT
j E−1

j G j

)

v = RC

N

∑
i=1

m

∑
j=1

(I −RT
j GT

j E−1
j Rj)f i , (3)

whereRj is the restriction fromV1 to E j , j = 1, . . . ,mandRC the restriction fromV1

to C .Thus, each term in the sum on the right-hand side can be computed indepen-
dently by subdomaini; moreover, since edges are one-dimensional,E j is typically
a tridiagonal matrix that can be factored easily. In addition, Rj f i is nonzero only if
E j is an edge of subdomaini, so the inner sum contains only as many terms as there
are edges in the subdomain boundary. Thus, the contributionGT

j E−1
j G j and the cor-

responding right-hand side can be calculated in parallel, and it remains to solve the
Schur complement system, whose size is typically comparable to the number of
subdomains. Oncev is known, theu j can be calculated in parallel by back substi-
tution, which completes Step 3 in the CNPC algorithm. Thus, the cost of the coarse
solve is low, similar to the cost of one coarse grid correction step in other domain
decomposition methods, such as FETI-DP [5].
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3 Convergence of the CNPC method

In this section, we outline the convergence analysis of the CNPC method under
simultaneous time and spatial grid refinement. For more details, see [12]. For ease
of presentation, we assume a uniform rectangular grid in which all control volumes
are of sizeh2, so thatM = h2I . Then (2) is a second-order discretization of (1):

−L u(·, t) = 1
h2 [Au(·, t)+BuΓ (t)]+O(h2).

We assume that the boundary data and source terms are sufficiently smooth, so that
u(x, t) has as many continuous spatial and temporal derivatives as needed.

Lemma 1. The CNPC method can be written as

Dun+1+
k
2
(I +

k
2

X2AX1)BuΓ (tn+1) =Cun− k
2
(I − k

2
X2AX1)BuΓ (tn)+τg(·, tn+1/2),

where k= τ/h2, D= (I + k
2X2A)(I + k

2X1A) and C= (I − k
2X2A)(I − k

2X1A). More-
over, the stability matrix D−1C satisfies‖D−1C‖W < 1 for any τ > 0 and h> 0,
where‖ · ‖W is induced by the vector norm‖u‖2

W := uT(I + k
2AX1)A(I + k

2X1A)u.

Recall that the classical Crank–Nicolson method can be written as

(I +
k
2

A)un+1+
k
2

BuΓ (tn+1) = (I − k
2

A)un− k
2

BuΓ (tn)+ τg(·, tn+1/2).

Thus, we see that CNPC and the classical Crank–Nicolson (CN)method differ by

ρ̂n :=
k2

4
X2AX1[A(un+1−un)+B(uΓ (tn+1)−u(tn))] =− τ3

4h2X2AX1
(

L (∂tu(·, tn+1/2))+O(h2)
)

.

This observation, combined with the fact that the truncation error of CN isO(τ2+
h2), yields the following lemma.

Lemma 2. The local truncation errorρn of the CNPC method at time step n satisfies

ρn = τ
[

− τ2

4h2X2AX1

(

L (∂tu(·, tn+1/2))+O(τ2)+O(h2)
)

+O(τ2)+O(h2)

]

.

In particular, if τ = O(hα) with α ≥ 1, thenρn = τ · [O(h2)+O(h2α−2)].

Note that theO(h2α−2) term comes from the termτ2

4h2 X2AX1. Fig. 3 shows the lo-
cal truncation error for a two-subdomain decomposition with τ = O(h), for which
Lemma 2 predictsρn/τ = O(1). Although this is true near the interface, we observe
that the error is much smaller away from the interface, whereX2AX1 vanishes.

Let εn := u(·, tn)−un denote the global error of the method at stepn. If ε0 = 0,
i.e., if the correct initial conditions are used, then a standard argument shows that

εn =
n

∑
j=1

(D−1C)n− jD−1ρ j−1.
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Fig. 3 Local truncation error of the CNPC method for a 1D two-subdomain problem withut =
uxx+g(x, t), τ = h= 1/n, wheren= 20,40,80.

We now splitρn into the interface part̂ρn and theO(h2) part and treat them differ-
ently. The smoothness ofρ̂n in time allows us to prove the following lemma.

Lemma 3. Let ε̂n = ∑n
j=1(D

−1C)n− jD−1ρ̂ j−1 be the global error due to the inter-
face. Then

‖ε̂n‖A ≤ 4τ2 · max
0≤l≤n−1

‖X2AX1zl‖A−1 +O(τ4),

where z0 =−L ∂tu(·, t1/2) and zl =−L ∂ 2
t u(·, tl ) for l ≥ 1.

Since‖u‖H1(Ω) is spectrally equivalent to‖u(·)‖A, we can use Lemma 3 to obtain
a bound for‖εn‖H1(Ω). To do so, we estimate

‖X2AX1zl‖A−1 = ‖A−1/2(I−X1)AX1zl‖2 ≤‖A1/2X1zl‖2+
√

‖X1A−1X1‖2 ·‖AX1zl‖2.

But X1A−1X1 = S−1
1 , whereS1 is the Schur complement ofA with respect to the

interface. Thus, we can invoke the well-known Sobolev estimate [17, Lemma 4.11],
cf. [2], which states that for a decomposition ofΩ into shape-regular, conforming
subdomains with diameterH, we have the condition number estimate

κ(S1) := ‖S1‖2‖S−1
1 ‖2 ≤

C
Hh

.

Since A has been scaled in such a way that‖S1‖2 = O(1), we conclude that
‖S−1

1 ‖2 ≤ Ch−1H−1. Additionally, since there areO(h−1) points per interface and
O(H−1) interfaces, we have‖X1zl‖2 = O(h−1/2H−1/2). Combining these estimates
leads to our main result.

Theorem 1.Let Ω be partitioned into shape-regular, conforming subdomainsΩi

with diameter≤ H. Then forτ = γhα for γ > 0 andα ≥ 1, the error of the CNPC
method satisfies

‖εn‖H1(Ω) ≤
Chβ

H
, (4)

whereβ = min{2α −1, 2}.
Thus, for a fixed number of subdomains, the method is second order if and only if
α ≥ 3/2. Forα = 1, i.e., forτ =O(h), the method is only first order, unlike the clas-
sical CN method; this is due to the local inconsistency near subdomain interfaces.
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Fig. 4 Error of the CNPC scheme for the 2D heat equationut −∆u= g(x,y, t) on Ω = (0,1)2.

4 Numerical results

We apply the CNPC method to solve

∂tu−∆u= g(x,y, t), (x,y) ∈ Ω = (0,1)× (0,1),

The domainΩ is decomposed into 4× 4 equal subdomains, and the PDE dis-
cretized using a standard 5-point finite difference stencilin space. The initial condi-
tionsu(x,y,0) and the source termg(x,y, t) are chosen so that the exact solution is
u(x,y, t) = sin(3πx)(1−e2y)(1−ey−1)

√
1+ t. Figure 4 shows the maximumL2 and

H1 error of the method over the time intervalt ∈ (0,1), with τ = hα for α = 1, 3
2,2.

As predicted by Theorem 1, the error behaves likeO(h) for τ = h, andO(h2) for
α = 3

2 and 2. Moreover, we also see that using the finer time stepτ = h2 only im-
proves the error marginally when compared toτ = h3/2.

Table 1 shows the error of the method forτ = h andτ = h3/2, whenΩ is decom-
posed intoN×N subdomains withN = 1/H. We see that forτ = h, the estimate (4)
is sharp; indeed, the errors are approximately constant along the diagonals, except
for the columnN = 2. Forτ = h3/2, the estimate is too conservative, as the error
does not deteriorate as the number of subdomains increases.This appears to be a
2D effect, since the estimate is sharp forτ = h3/2 in the 1D case. Thus, there ap-
pears to be a subtle interplay between temporal and spatial interpolation errors that
gives rise to this “superconvergence” behavior.

Conclusions and outlook.The CNPC method allows one to solve diffusion prob-
lems in parallel to second-order accuracy without iterating, providedτ = O(h3/2)
or smaller. For 3D problems, the Schur complement (3) becomes much denser; one
alternative is to use a two-level approach, by first correcting the face values using
explicit edge and vertex values, and then correct the edge and vertex values using the
face values. The error analysis for this variant, as well as for more general equations
(e.g. the advection-diffusion equation), will be the subject of a future paper.
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Table 1 MaximumL2 error for the 2D example .

τ = h τ = h3/2

Subdomains per direction (N = 1/H) Subdomains per direction (N = 1/H)
n= 1/h 2 4 8 16 2 4 8 16

16 7.540e-022.347e-013.300e-01 5.888e-026.585e-027.165e-02
32 2.265e-021.399e-012.330e-013.185e-011.448e-021.397e-021.392e-021.402e-02
64 1.291e-027.602e-021.382e-012.391e-013.607e-033.425e-033.296e-033.168e-03
128 6.941e-034.006e-027.405e-021.397e-019.010e-048.513e-048.107e-047.571e-04
256 3.597e-032.053e-023.838e-027.426e-022.252e-042.124e-042.015e-041.860e-04
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