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1 Introduction

In this paper, we propose a fast parallel solver for the pali@bquation

du=2u+g(xt), X€E Q, 1
u=ur(xt) onl =0Q, u(x,0)=f(x) onQ, @
whereQ is an open connected subseffgfand.Zu = ij Ox (Kij (X)0x; u) —c(x)u,
with ¢(x) > 0 andkij(x) symmetric and uniformly positive definite, i.e., we have
Kij (X) = K;ji (x) fori # j andy; j Kij (X)&i& =AY Eiz for all choices of;, where the
constantA > 0 is independent of. Our method is based on the predictor-corrector
method introduced by [15]. In that work, the authors consiamlinear reaction-
diffusion equations posed on branched structures, whictlemihe evolution of
the electric potential in neurons, see Fig. 1. In such probjehe nodal points are
natural separators of the computational domain, meanatgtle solution within the
individual branches can be solved independently if theteéagotential at the nodes
are known. Based on this observation, the authors propdse€itank—Nicolson
predictor-corrector (CNPC) method: they first use forwanteEto predict the nodal
values, and then backward Euler to solve for the solutiohiwithe branches. To
maintain stability, they then correct the nodal values gisirbackward Euler step,
and the whole solution is extrapolated to obtain formal sdeorder accuracy in
time. The main advantage of this method is that a fixed amducdmputation is
performed at each time step, and no iteration is necesshiy.i§ unlike classical
domain decomposition (DD) algorithms such as Schwarz nustf®, 14, 11, 1] or
waveform relaxation methods [10, 8, 9, 7], where one musdtiédo convergence (or
to some fixed tolerance), and the number of iterations générareases as the grid
is refined. Thus, a suitable extension of the CNPC methodDoairad 3D problems
can be useful for parallel-in-time methods such as Parf8a6], where fast coarse
integrators are needed. Other DD-type methods with a fixetlper time step have
been proposed in [4] and [16]; both are only first order adewader simultaneous
refinement in space and time.

Our main goal is to present in detail a generalization of the®C method that
can be used to solve 2D problems with many subdomains inlearghis is done
in Section 2. In particular, we show how the backward Euleremion step for the
interface can be implemented efficiently, even in cases avther subdomain inter-
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Fig. 1 A branched structure, with nodes indicated.

faces are coupled through cross points. To fix ideas, we Hay&ea a finite volume
discretization in space, although similar techniques @ansed for other discretiza-
tions. In Section 3, we examine the convergence of the CNPBodeWe will see
that the method indeed converges as the meshhsized the time stex satisfies

T = 0O(h?) for o > 1. In fact, the method attains full second order accuracy for
a > 3/2; it is however only first order accurate whers= O(h). Finally, numerical
results in Section 4 illustrate the behavior of the methadifany subdomains.

2 The CNPC algorithm

To define the CNPC algorithm, we will assume that the donaiis divided into
shape regular, quasi-uniform and conforming control vaexh, i = 1,...,n, with
diameterh; < h, see Fig. 2. If we discretize (1) in space using a finite volume
method, we get a semi-discrete ODE system of the form

Mau(t) + Au(t) + Bur (t) = Mg(-,t). 2)

Here,u(t) are the unknown values at the nodal points at tindec R"*" is a sparse,
symmetric positive definite matrix whose entrégsare non-zero and @(1) (con-
stant with respect td) if and only if volumesi and j are neighborsB € R™""
contains the dependence on the Dirichlet boundary valtsesntries are als@(1).
ur (t) € R contains the Dirichlet boundary values at tim&/ is a diagonal mass
matrix whose(i, i) entry is the area of;; thus, the elements & are of sizeD(h?).
g(-,t) is a vector whose elements are the valuggatfthe nodes; we will use this dot
notation to denote the vectors of samples of other funcidsenhere in this paper.
We now divide the unknowns into two subsets, ititerface unknown¥; and the
interior unknownsY,. We also define two corresponding project&isX, € R™"
such tha¥X;u projects onto?3, i.e., it leaves all the values ity unchanged and sets
all the other entries to zero, aXd does the opposite. Thus, we haxe= 1 — X; and
X1 X2 = XoX1 = 0. Note tha¥X; andX, commute withM, since the latter is diagonal.
We are now ready to define the CNPC algorithm. For a given step-sizer and
an approximation” = u(-,t,), one step of the CNPC method proceeds as follows:

1. Predict the interface valuestat t, 1/, using forward Euler: calculate” using

M(u* —u")

T/Z — —Xl(Aun —+ BU[' (tn)) + XlMg('athrl/Z)a
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Fig. 2 Decomposition into interface (light and dark gray) andrilwte(white) cells and their cor-
responding unknowns. Light gray corresponds to edge naukdark gray to cross points.

Note thatXp(u* —u™) = 0, so interior node values are not altered by this step.
2. Using the predicted valuégu* as boundary values, solve fot* in

ur (tn) +ur (th+1)
2

M(u** —u")
T/2

= —Xo | A(X{U* + Xou™) + B( )} +XoMg(-,thy1/2),
where bothur (t,) andur (th+1) are known. This corresponds to a backward
Euler step for the interior unknown&; the interface values are not updated.
Note that this step requires solving a linear system witttlagrix M + £ XoAXo.

3. Computeu™1/2 by correcting the interface valuestat tny1/2 With backward
Euler, usingu*™ as boundary values:

ur (tn) + ur (ta+1)
2

M(unJrl/Z _ U**)
T/2

= —Xa[ACQUM Y2 Xou™) + B )|+ XM tre1/2).
This is a backward Euler step for the interface nodes, simeie talues have not
been updated in the previous steps, i.e., we hque* = X;u". For the other
nodes, we hav,u" /2 = X,u*™, i.e. we reproduce the values obtained in step
2. Here one needs to solve a linear system with madrix %Xlel.
4. Extrapolate to obtain™t:

un+l _ 2un+1/2 —un.

Note that there is no iteration to convergence, since eatheofbove is only per-
formed once per time step.

Parallelization. We only need consider how to solve linear systems with mesgric
A =M+ ZXAX (i = 1,2) in parallel, since the other operators are local in nature
and easy to parallelize. For the matfix = M + $X2AX; (step 2), we note that the
interior nodes/s are naturally decomposed into disconnected “subdomaihse’se/
only connections are through the interface nodgsThus,A; is block diagonal,
with blocks corresponding to subdomains or to individuale®in¥;. As a result,

if we assign each subdomain to its own processor, step 2 caolped in parallel.
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Next, we need to solve systems involviAg =M + £X;AX; (step 3). This is a
block diagonal matrix whose largest block is of the same a&z#;, so it is much
smaller than the original system. Also note tixaAX; (and henced;) is sparse
with nonzero entries corresponding to neighboring intrfaodesonly. This is
unlike a Schur complement approach, where the eliminatfdnterior nodes in-
troduces additional connections between non-neighbadnitegface nodes. How-
ever, the unknowns corresponding to edges from differdmd@onains are coupled
through cross points, see Fig. 2, leading to a system th&tlismby coupled.

We now show how we can overcome this bottleneck by reduciegirter-
face system to an even smaller one that has only as many leariab there are
cross pointdn the domain. LeN be the number of subdomains, i.e., the number
of connected components gf. We partition the set/; of interface nodes into
edges{&,...,ém} between subdomains ari, the set of cross points, so that

Y1=%U (u’j“:l@@j). We now permute the blocks @f; so that edges are ordered

first and the cross points last. If we lgt be the unknowns correspondingdpand
v be those belonging to cross points, we get

E; Gy Uq
E, Gy Uo

N
Em Gm Um =
GI G; G% C \%

whereE; are sparse matrices corresponding to couplings wihjii; are the con-
nections betweed;j and the cross points, ai@irepresents the connections among
cross points themselves (typically= 0). Thef; represent contributions of subdo-
maini to the right-hand side, e.g., contributions from nodes lmdsumaini that are
adjacent tej. Then the Schur complement with respect to the cross poéaishes

m N m
(c- 2 CIE G)v=Re 3 3 (-RIGTE Ry, 3)

whereR; is the restriction fron¥; to &j, j = 1,...,mandRc the restriction fronv;

to ¥.Thus, each term in the sum on the right-hand side can be dechmdepen-
dently by subdomaiit moreover, since edges are one-dimensidBals typically

a tridiagonal matrix that can be factored easily. In addit®;f; is nonzero only if

&j is an edge of subdomainso the inner sum contains only as many terms as there
are edges in the subdomain boundary. Thus, the contrib@ﬁﬁ}’lGJ and the cor-
responding right-hand side can be calculated in paralel jtremains to solve the
Schur complement system, whose size is typically compartbthe number of
subdomains. Once is known, theu;j can be calculated in parallel by back substi-
tution, which completes Step 3 in the CNPC algorithm. Thius,dost of the coarse
solve is low, similar to the cost of one coarse grid corretstep in other domain
decomposition methods, such as FETI-DP [5].
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3 Convergence of the CNPC method

In this section, we outline the convergence analysis of the®C method under
simultaneous time and spatial grid refinement. For moreldetze [12]. For ease
of presentation, we assume a uniform rectangular grid irckvall control volumes
are of sizen?, so thatM = h?l. Then (2) is a second-order discretization of (1):

1
—ZU(-t) = 5 [Au(-,t) + Bur (1) + O(?).
We assume that the boundary data and source terms are siiffisimooth, so that
u(x,t) has as many continuous spatial and temporal derivativesexied.
Lemma 1. The CNPC method can be written as

ko k ko k
DU 4 5 (1 5XeAX)BUF (th1) = CU" — 2 (I — 5XAX)BUF (tn) +T0(- thr1/2).

where k= 1/h?, D = (I + §XA) (I + ¥X%;A) and C= (I — $XA) (1 — $X;A). More-
over, the stability matrix D'C satisfies|D~'C|jw < 1 for any r > 0 and h> 0,
where|| - ||w is induced by the vector norfjul[% := uT (I + KAX)A(l + $X;Au.
Recall that the classical Crank—Nicolson method can beesris

k k k k
(I+ EA)UrHl + EBUF (thy1) = (1 — EA)Un — EBUF (th) + Tg(~,tn+1/2).

Thus, we see that CNPC and the classical Crank—Nicolson (@ithod differ by

o
4h2

2
Pri= k_szxl[A(u“+1 —u")+B(Ur (th+1) —U(ta))] =

¢ XoAXe (L(RU(-,th.1/2)) +O(hP)) .

This observation, combined with the fact that the truncaéioror of CN isO(12 +
h2), yields the following lemma.

Lemma 2. The local truncation erropy, of the CNPC method at time step n satisfies

2
=T | 4o e (Z (AUt 2) + O(T) + () +O(2) + O(1?).

In particular, if T = O(h?) with a > 1, thenp, = T-[O(h?) + O(h??~2)].

Note that theD(h??~2) term comes from the ternjr%XZAxl. Fig. 3 shows the lo-
cal truncation error for a two-subdomain decompositiorhwit= O(h), for which
Lemma 2 predictp,/T = O(1). Although this is true near the interface, we observe
that the error is much smaller away from the interface, wierfeX; vanishes.

Let &, := u(-,ty) — u" denote the global error of the method at stejif &, = 0,
i.e., if the correct initial conditions are used, then a ded argument shows that

&= S (DIC)"IDp; 4.

M-

J
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n=20 n=40 n=_380

Fig. 3 Local truncation error of the CNPC method for a 1D two-subdiomproblem withu; =
Uxx + g(X,t), T=h=1/n, wheren = 20,40, 80.

We now splitp, into the interface pab, and theO(h?) part and treat them differ-
ently. The smoothness @f, in time allows us to prove the following lemma.

Lemma 3.Let &, = z'j‘:l(D*lC)”*ijlij,l be the global error due to the inter-
face. Then
|&nlla < 472 max [ XeAXaz |5 1+ O(Th),
0<l<n-1

where g = —Zau(-,t; ) and 7 = —Z32u(-,t) for | > 1.

Since||u[|y1() is spectrally equivalent tfu(-) || a, we can use Lemma 3 to obtain
a bound forj|&||y1(q). To do so, we estimate

IXeAXe7|a 1 = [|AH2(1 = X0)AXaz [l2 < [AY2X0z |12+ 1/ XA X |2+ | A%z 2

But Xa A 1X; = ql, where$; is the Schur complement & with respect to the

interface. Thus, we can invoke the well-known Sobolev estinfil 7, Lemma 4.11],

cf. [2], which states that for a decomposition@finto shape-regular, conforming
subdomains with diametét, we have the condition number estimate

C
K(S0) = 81218t e <

Since A has been scaled in such a way th&|> = O(1), we conclude that

|S;Y]2 < Ch~*H~1. Additionally, since there ar®(h~?1) points per interface and
O(H~1) interfaces, we havX;z ||, = O(h~1/2H~1/2). Combining these estimates
leads to our main result.

Theorem 1.Let Q be partitioned into shape-regular, conforming subdomaihs
with diameter< H. Then fort = yh? for y > 0 anda > 1, the error of the CNPC
method satisfies

ChP
€nllnie) < -5 4)
wheref3 = min{2a — 1, 2}.

Thus, for a fixed number of subdomains, the method is secatet drand only if
a >3/2.Fora =1,i.e., fort = O(h), the method is only first order, unlike the clas-
sical CN method; this is due to the local inconsistency nebdemain interfaces.
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——pt error,T=h
—— 2 error,T=h

1 |—=—H'error, 1=h%?
—— 2 error, T = h3/2
1 |—¥—H' error, 1= n?
——2 error, T = h?
1]---om

- = 0(h?)

Error

Fig. 4 Error of the CNPC scheme for the 2D heat equation Au= g(x,y,t) on Q = (0,1).

4 Numerical results

We apply the CNPC method to solve
Gu—Au=g(xyt),  (xy)eQ=(0,1)x(01),

The domainQ is decomposed into # 4 equal subdomains, and the PDE dis-
cretized using a standard 5-point finite difference stanapace. The initial condi-
tionsu(x,y,0) and the source termg(x,y,t) are chosen so that the exact solution is
u(x,y,t) = sin(3mx) (1 —e?)(1— &~ 1)y/1+t. Figure 4 shows the maximuh? and
H* error of the method over the time intertat (0,1), with T = h? fora =1, %,2.
As predicted by Theorem 1, the error behaves @iK&) for T = h, andO(h?) for
o= % and 2. Moreover, we also see that using the finer time stefh? only im-
proves the error marginally when compared te h%/2,

Table 1 shows the error of the method foe h andt = h%?2, whenQ is decom-
posed intdN x N subdomains wittN = 1/H. We see that for = h, the estimate (4)
is sharp; indeed, the errors are approximately constangatte diagonals, except
for the columnN = 2. Fort = h%2, the estimate is too conservative, as the error
does not deteriorate as the number of subdomains increBisissappears to be a
2D effect, since the estimate is sharp for h¥? in the 1D case. Thus, there ap-
pears to be a subtle interplay between temporal and spaittgapolation errors that
gives rise to this “superconvergence” behavior.

Conclusions and outlook.The CNPC method allows one to solve diffusion prob-
lems in parallel to second-order accuracy without iteggtprovidedr = O(h%/2)

or smaller. For 3D problems, the Schur complement (3) besomech denser; one
alternative is to use a two-level approach, by first corngcthe face values using
explicitedge and vertex values, and then correct the eddjeentex values using the
face values. The error analysis for this variant, as welbasfore general equations
(e.g. the advection-diffusion equation), will be the sebjef a future paper.
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Table 1 MaximumL? error for the 2D example .

T=h T=h%?
Subdomains per directiolN(= 1/H) Subdomains per directiolN(= 1/H)
n=1/h 2 4 8 16 2 4 8 16
16 [7.540e-022.347e-013.300e-01 5.888e-026.585e-0%7.165e-03

32 [2.265e-021.399e-012.330e-013.185e-011.448e-021.397e-021.392e-021.402e-02
64 |1.291e-027.602e-021.382e-012.391e-013.607e-033.425e-033.296e-033.168e-03
128 |6.941e-034.006e-027.405e-021.397e-019.010e-048.513e-048.107e-047.571e-04
256 |3.597e-032.053e-023.838e-027.426e-022.252e-042.124e-042.015e-041.860e-04
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