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We present here an analysis of the Richardson iterations preconditioned by either
the restricted additive [2] or multiplicative Schwarz [6] operators, and the associated
GMRES Krylov sub-space acceleration. The framework of study is purely algebraic
and general sparse unsymmetrical and indefinite matrices are considered. This paper
can be seen as an extension of [1, 10], in which a block preconditioned system is
downsized to an interface system. The following study is circumscribed to restricted
Schwarz preconditioners.

At first, the equivalence between the primary and interface iterations is described.
Then, the interface system operator is depicted as a Schur complement of the per-
muted preconditioned global matrix. Finally, the benefit of the Krylov sub-space
acceleration of the interface iterations, over the primary ones, is exhibited. Note that
exact solves of the sub-domain problems is assumed throughout.

The linear system to solve is :
Au = f (1)

with A ∈ Rn×n, u ∈ Rn and f ∈ Rn. We assume that A is close to structurally sym-
metric, which is a common property of matrices originating from PDE problems.

As a preparatory step, we start by introducing the vertex-based partitioning pro-
cess and the notations used hereafter.

1 Introduction

1.1 Graph partitioning and overlap

We denote G the adjacency graph of matrix A, V = {1,2, ...,n} the nodes of G ,
and E the edges, which correspond to the non-zero off-diagonal elements of A. The
graph G is considered to be undirected: given an unordered pair of distinct nodes
(v1,v2) ∈ V 2, we have (v1,v2) ∈ E if and only if A(v1,v2) ̸= 0 or A(v2,v1) ̸= 0.

A non-overlapping partition of V with p sub-domains corresponds to p non-
empty sub-sets, {Vi}1≤i≤p, such that V =∪p

i=1Vi and V j∩Vk =∅ for 1≤ j < k≤ p.
The usual goal when performing this graph-partitioning task is to minimize the over-
all edge cut, which is the total number of edges (vi,v j)∈ E with vi and v j belonging
to distinct sub-domains, while equilibrating the number of nodes per sub-domain
to approximatively n/p. Dealing with p equal sub-sets aims at balancing the dis-
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tributed computational and memory load per processor. Minimizing the number of
edges crossing the partition boundaries results in a reduced communication volume
between processors.

Increasing the δ -overlap is beneficial regarding the convergence rate of Schwarz
methods (see [6] for example): starting from Vi,0 ≡ Vi, this consists in growing
recursively each sub-set Vi,δ by adding some of the adjacent nodes, in order to form
a larger set Vi,δ+1.

For each sub-domain and for each δ level, ni,δ ≡ |Vi,δ | refers to the cardinality
of the node sub-set.

1.2 Notations regarding restrictions operators

Similarly to what is done in [9], three different sub-sets of nodes are defined in
association with a given sub-domain Vi,δ : V int

i,δ , V loc
i,δ and V ext

i,δ . The internal nodes
V int

i,δ are the nodes of Vi,δ that have their graph neighborhood fully included in Vi,δ .
The local interface nodes V loc

i,δ are the nodes of Vi,δ that have a least one of their
neighbors outside of Vi,δ . Finally, the external interface nodes V ext

i,δ are the nodes
that do not belong to Vi,δ , but which have at least one of their neighbors within Vi,δ .

Note that V ext
i,δ is the set of candidate nodes for growing the sub-set Vi,δ : Vi,δ+1 ⊆

Vi,δ ∪V ext
i,δ .

An important sub-set of nodes for our study is the global set of external interface
node, simply called the interface nodes hereafter: V ext

δ ≡∪p
i=1V

ext
i,δ , with cardinality

next
δ ≡ |V

ext
δ |. The complementary sub-set of V ext

δ is denoted by V̄ ext
δ ≡ V \V ext

δ .
In the following, notations from [7] are used to describe the different operators

associated with the algebraic Schwarz preconditioners. For the i-th sub-domain, we
denote Ri,δ ∈ Rni,δ×n the restriction operator associated with Vi,δ . Rext

i,δ is the re-
striction operator associated with V ext

i,δ . The special restriction operator used in the
restricted Schwarz iterations, is defined as follows: R̃i,δ ≡ Ri,δ RT

i,0Ri,0 ∈ Rni,δ×n.
The node sub-set V̄i,δ refers to the following set difference: V̄i,δ ≡ V \Vi,δ , and

R̄i,δ to the restriction operator associated with V̄i,δ . Rext
δ and R̄ext

δ are the restriction
operators associated with V ext

δ and V̄ ext
δ respectively.

The local parts of the operator A are the following ones: Ai,δ ≡ Ri,δ ART
i,δ for the

inner coupling, and Aext
i,δ ≡ Ri,δ ARext T

i,δ for the outer coupling.
Finally, the vector y stands for the vector of interface node unknowns

y = Rext
δ u ∈ Rnext

δ (2)

while x = R̄ext
δ u ∈ Rn−next

δ stands for the complementary unknowns, located at the
non-interface nodes V̄ ext

δ .
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2 Richardson iterations with a restricted Schwarz
preconditioner

The preconditioned Richardson iteration u(k+1) = u(k) + M−1( f − Au(k)), is ex-
pressed as the stationary iteration

u(k+1) = F u(k)+g (3)

where F = I−M−1A and g = M−1 f are the iteration matrix and vector. We only
consider here the restricted additive (RAS) and multiplicative (RMS) Schwarz pre-
conditioners, as defined for example in [6]:

FRAS,δ = I−
p

∑
i=1

R̃T
i,δ A−1

i,δ Ri,δ A (4)

FRMS,δ =
1

∏
i=p

(
I− R̃T

i,δ A−1
i,δ Ri,δ A

)
(5)

As pointed out in [1, 10], under some specific conditions, the primary iteration
(3) can be reduced to an equivalent interface iteration, in terms of the unknown y
defined in (2):

y(k+1) = Gy(k)+h (6)

In order to gain more insight into this interface system, let us derive the iteration
(6) starting from (3). If the restriction Rext

δ is applied to (3), we get the following
iteration: y(k+1) = Rext

δ Fx(k)+h, with h≡ Rext
δ g. We now make use of the following

relation:

Ri,δ A = Ri,δ A(RT
i,δ Ri,δ + R̄T

i,δ R̄i,δ )

= Ai,δ Ri,δ +Ri,δ AR̄T
i,δ R̄i,δ

= Ai,δ Ri,δ +Aext
i,δ Rext

i,δ (7)

Thus, in the restricted additive Schwarz case, we have:

FRAS,δ = I−
p

∑
i=1

R̃T
i,δ A−1

i,δ (Ai,δ Ri,δ +Aext
i,δ Rext

i,δ )

= I−
p

∑
i=1

R̃T
i,δ Ri,δ −

p

∑
i=1

R̃T
i,δ A−1

i,δ Aext
i,δ Rext

i,δ (8)

Using the following equality,
p
∑

i=1
R̃T

i,δ Ri,δ =
p
∑

i=1
RT

i,0Ri,0RT
i,δ Ri,δ =

p
∑

i=1
RT

i,0Ri,0 = I, we

get:

FRAS,δ =−
p

∑
i=1

R̃T
i,δ A−1

i,δ Aext
i,δ Rext

i,δ (9)
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This shows that the iteration matrix FRAS,δ only depends on the interface nodes.
For the multiplicative case, by using (7), we get:

FRMS,δ =
1

∏
i=p

(
I− R̃T

i,δ A−1
i,δ Ri,δ A

)
=

1

∏
i=p

(
I−RT

i,0Ri,0− R̃T
i,δ A−1

i,δ Aext
i,δ Rext

i,δ

)
(10)

For simplicity reasons, we call ai the left term in the parentheses and bi the right
term: ai ≡ I−RT

i,0Ri,0, bi ≡ R̃T
i,δ A−1

i,δ Aext
i,δ Rext

i,δ . By noticing that ∏1
i=p ai = 0 and that

ai b j = b j if i ̸= j, we get:

FRMS,δ =
p

∑
k=1

∑
p≥i1>...>ik≥1

(−1)kbi1 . . .bik (11)

The important thing is that the bi terms only depend on the interface nodes, and so
does FRMS,δ consequently.

Hence we have, in both restricted Schwarz cases:

F = FRext T
δ Rext

δ and FR̄ext T
δ R̄ext

δ = 0 (12)

Indeed we know from [10] that k belongs to V̄ ext
δ (that is, k is not an interface node)

if and only if the k-th column of F is null, and if and only if the k-th column of M is
equal to the k-th column of A.

We can now state that with the coherent initial interface conditions y(0)=Rext
δ u(0),

the following relation between u(k) and y(k) holds:

y(k+1) = Rext
δ u(k+1) = Rext

δ

[
Fu(k)+g

]
= Gy(k)+h for k ≥ 1 (13)

The iteration matrix G can be expressed as follows: G = Rext
δ FRext T

δ . Note that this
relation holds whatever the initial condition x(0) = R̄ext

δ u(0) is.
We now focus on the interface system: (I−G)y(∞) = h.

3 Restricted Schwarz and Schur

In [3, 8], it is shown that a multiplicative Schwarz iterate is identical to a block
Gauss-Seidel sweep applied to the Schur complement system on the interface un-
knowns, provided that coherent initial conditions are used. Similar results also holds
between the additive Schwarz iterate and a block Jacobi sweep of the Schur comple-
ment system. The considered Schur complement S is related to the interface nodes
of the non-overlapping partition. In the overlapping case, it is possible to decom-
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pose the sub-domains into smaller disjoint parts and express the global matrix as a
preconditioned version of S, thanks to block Gaussian elimination. As stated in [4]:

the overlapping method is equivalent to a non-overlapping method with a specific interface
preconditioner. One can think of the overlapping method implicitly computing the effect of
this preconditioner by the extra operations performed on the overlapping region.

We observe that in our case, the interface unknowns may not correspond to
the interface nodes of the non-overlapping partition. If we consider the permuted
matrix Pδ M−1APT

δ , with M being a restricted Schwarz preconditioner, and PT
δ =[

R̄ext T
δ Rext T

δ
]
, we get the following linear system:

Pδ M−1APT
δ

{
x
y

}
=

{
R̄ext

δ g
h

}
(14)

We note that the matrix Pδ M−1APT
δ is a 2×2 block matrix:

Pδ M−1APT
δ =

[
R̄ext

δ M−1AR̄ext T
δ R̄ext

δ M−1ARext T
δ

Rext
δ M−1AR̄ext T

δ Rext
δ M−1ARext T

δ

]
(15)

In the previous section, we saw that FR̄ext T
δ = 0, which implies that

R̄ext
δ M−1AR̄ext T

δ = I (16)

Rext
δ M−1AR̄ext T

δ = 0 (17)

We also have the following equalities:

R̄ext
δ M−1ARext T

δ = −R̄ext
δ FRext T

δ (18)

Rext
δ M−1ARext T

δ = I−Rext
δ FRext T

δ = I−G (19)

Plugging these equalities into (14), we get:

Pδ M−1APT
δ

{
x
y

}
=

[
I −R̄ext

δ FRext T
δ

0 I−G

]{
x
y

}
=

{
R̄ext

δ g
h

}
(20)

The matrix I−G can be seen as a Schur complement of Pδ M−1APT
δ with respect to

the identity operator applied to the non-interface nodes. The inverse of Pδ M−1APT
δ

can be expressed in this way:

(
Pδ M−1APT

δ
)−1

=

[
I R̄ext

δ FRext T
δ (I−G)−1

0 (I−G)−1

]
(21)

Also, equation (20) gives us some information about the spectrum of I−G:

σ
(
M−1A

)
= σ

(
Pδ M−1APT

δ
)
= σ(I)∪σ(I−G) (22)
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The spectrum of I−G is the spectrum of M−1A augmented with the eigenvalue 1,
which has a multiplicity of n−next

δ .
We remark that the cost of explicitly building the I−G matrix is prohibitive,

regarding the significant resources required. In the RAS case, the matrix G writes:

G =−Rext
δ

p

∑
i=1

R̃T
i,δ A−1

i,δ Aext
i,δ Rext

i,δ Rext T
δ (23)

This represents |V ext
i,δ | local systems to solve for each sub-domain, which solution is

dense. This is why iterative methods are preferred.

4 Krylov acceleration

Since matrix A is assumed to be unsymmetrical and indefinite, the GMRES Krylov
sub-space method [8] is used to accelerate the iteration (6), as proposed in [1]. The
GMRES method is chosen over some other Krylov techniques for its monotonous
convergence property. The algorithm used to solve the interface system is presented
next, in a left-preconditioned version.

Algorithm 1 GMRES resolution of (I−G)y = h
r0 = Rext

δ M−1(b−Ax0), β = ∥r0∥, and v1 = r0/β
for j = 1, ...,m do

w← Rext
δ M−1ARext T

δ v j
for i = 1, ..., j do

hi, j ← (w,vi)
w← w−hi, jvi

end for
. . .

end for
. . .
Compute zm = argminz∥βe1− H̄mz∥ and ym = Rext

δ x0 +Vmzm

If satisfied y(∞)← ym else restart with x0 = Rext T
δ ym

An important point is that Algorithm 1 only differs from the usual one by the
use of the restriction and prolongation operators Rext

δ and Rext T
δ . Also, one extra step

is required to solve the global solution from the interface solution y(∞):

u(∞) = (I−M−1A)Rext T
δ y(∞)+g (24)

In this last step, the preconditioner M−1 can differ from the one used in the GMRES
algorithm. For example, if M−1

RAS,δ is chosen, we get:



GMRES acceleration of restricted Schwarz iterations 7

u(∞) =
p

∑
i=1

R̃T
i,δ A−1

i,δ Ri,δ

(
b−AR̄T

i,δ R̄i,δ Rext T
δ y(∞)

)
=

p

∑
i=1

R̃T
i,δ A−1

i,δ

(
Ri,δ b−Aext

i,δ Rext
i,δ Rext T

δ y(∞)
)

(25)

Algorithm 1 represents less floating point operations and also requires less mem-
ory to store the Arnoldi vectors than when GMRES is applied to the primary un-
knowns, with almost no extra work regarding the implementation.

Fig. 1 Full GMRES conver-
gence of the global and inter-
face systems. GT01R matrix
from the UF sparse matrix
collection is used. Initial con-
dition is x(0) = {1, ...,1}T .
The domain is divided into 2
parts (p = 2) with an over-
lap of δ = 1 (all the adjacent
nodes are included). The num-
ber of primary and interface
unknowns is 7980 and 420
respectively. 5 10 15 20 25 30
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Fig. 1 presents the GMRES convergence of both primary and interface systems.
Matrix GT01R from the UF sparse matrix collection [5] is used. We observe that the
convergence behaviors are similar, but slightly differ because of the non-interface
nodes. The size of the global system is 7980, while it is 420 for the interface system.

Also, the new vector w← Rext
δ M−1ARext T

δ v j in the outer loop of Algorithm 1 is
equivalent to this one: w← (I−Rext

δ FRext T
δ )v j, in which only local “homogeneous”

problems are solved. For example in the RAS case, we have:

w←

(
I +Rext

δ

p

∑
i=1

R̃T
i,δ A−1

i,δ Aext
i,δ Rext

i,δ Rext T
δ

)
v j (26)

The local operator A−1
i,δ is applied to Aext

i,δ Rext
i,δ Rext T

δ v j, which only concerns the local
interface nodes of the sub-domain, V loc

i,δ . This means that for the local problem in
(26), the right-hand side is null for the internal nodes V int

i,δ . Thus, a local Schur
complement approach may be used to deal with each local problem, associated to
an iterative local solver and the LU factorization of the two diagonal blocks of Ai,δ
corresponding to the internal and the local interface nodes.



8 Pacull and Aubert

5 Conclusion

The restricted Schwarz iterations have been described in details. It appears that the
restricted Schwarz operators benefit from the indirect preconditioning effect of the
overlap, but also from the non-overlapping property of the restricted local operator
images. We have seen that solving the interface system instead of the primary one,
is advantageous regarding memory usage and floating point operation count. This
represents only a slight modification of the global algorithm, but requires exact local
solves. Another advantage is that the local problems can be treated as homogeneous
problems.
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