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1 Introduction

Discontinuous Galerkin (DG) methods for partial differential equations are well
suited to treat nonconforming meshes and inhomogeneous polynomial orders re-
quired by hp-adaptivity. Their elementwise formulation permit us to consider com-
plex meshes and the relaxation of the continuity constraints allows the polyno-
mial order to be refined locally. However, DG discretizations lead to large and
ill-conditioned algebraic systems. In this paper, we studya quasi-optimal precon-
ditioner for the spectral element version of DiscontinuousGalerkin methods. In
particular, we focus on the interior penalty formulation ofsuch DG schemes. For
a review of the different classes of DG methods, the reader isreferred to [2].

Recent endeavors in the domain decomposition community have lead to the de-
velopment of additive [7] and multiplicative [1] Schwarz preconditioners for DG.
Among additive Schwarz solvers, nonoverlapping methods such as BDDC (Balanc-
ing Domain Decomposition by Constraints) or FETI-DP (Dual-Primal Finite Ele-
ment Tearing and Interconnecting) for DG have been designed[6] considering only
variations on the subdomain sizeH or the element sizeh in a finite element context.
Based on the pioneer work by [5, 9] and later [10], the BDDC algorithm was re-
cently generalized to CG-SEM (continuous Galerkin spectral elements) in [12, 8].
Following the work in [11], and more recently [3], we make useof the ASM (Auxil-
iary Space Method) to derive a preconditioner for DG-SEM. The paper is organized
as follows.

First, we generalize the BDDC preconditioners for CG-SEM studied in [12] to
inhomogeneous polynomial distributions, where polynomial degrees is allowed to
vary in different elements but we enforce the polynomial degree of the basis func-
tions to match at the interface between elements.

Second, the ASM is presented and applied to derive a solver for DG-SEM based
on the previous continuous solver. Once the Schur complement for the continuous
problem is solved, the global continuous solution is readily obtained using exact
local solvers. The discontinuous solution is then obtainedsolving the ASM problem.
The resulting preconditioner is proved to have the same performances of the BDDC
preconditioners for CG-SEM if the polynomial jumps are smooth enough.
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In the last section, we present numerical simulations showing the robustness of
the extended BDDC preconditioner with respect to polynomial jumps. The ASM-
BDDC is finally tested by varying the number of spectral elements per subdomain
H/h, the polynomial degreep and the viscosity coefficients.

The present work is an extension of [4].

2 Balancing Domain Decomposition by Constraints with
inhomogeneous polynomial degrees

We consider the second-order elliptic problem with homogeneous Dirichlet bound-
ary conditions

−∇ · (µ∇u) = f in Ω , u= 0 on∂Ω , (1)

whereΩ ⊂ R
d (d = 2,3) is a bounded domain with Lipschitz boundary. Problem

(1) admits a unique weak solution inH1
0(Ω) if we assume thatf ∈ L2(Ω) and

µ ∈ L∞(Ω), with µ ≥ µ0 a.e. inΩ for a suitable constantµ0 > 0.

2.1 CG-SEM discretization for elliptic problems

Given a partition ofΩ =
⋃N

k=1 Ωk into spectral elements, we define the continuous
Galerkin spaceV C

δ = {v : Ω → R | ∀k, v|Ωk
∈ Ppk(Ωk), v ∈ C0(Ω)} , that is the

space of continuous elementwise polynomial functions. Problem (1) in its weak
form is then:
Find u∈ H1

0(Ω) such that

ac(u,v) = L(v) ∀v∈ V
C

δ , (2)

where
ac(u,v) = ∑

k

∫

Ωk

µ(x)∇u·∇vdx, L(v) = ∑
k

∫

Ωk

f vdx.

Considering elliptic coefficientsµ that are constant on each spectral elementi.e.
µ|Ωk

= µk, the bilinear form of problem (2) can be written

ac(u,v) = ∑
k

µka
k
c(u,v). (3)
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2.2 CG-SEM with locally varying polynomial degrees

The definition ofV C
δ allows the polynomial degree to vary inside an element. How-

ever, the continuity constraint forces the polynomial degrees to match at the inter-
face between two spectral elements, in the direction parallel to the interface. There-
fore, the polynomial degree at the interface is enforced by the spectral element car-
rying the lowest polynomial degree. For a given polynomial order p on Ωk, we
introduce the nodal basis functions{ψin}in=0···pn

formed by the(pn+1) Lagrange
interpolants at the Gauss-Legendre-Lobatto (GLL) nodes{xin}in=0···pn

in the n-th
dimension. Considering a nodex ∈ Ωk, the following two configurations can occur:

• x∈Ωk/∂Ωk. In this case the basis functionφj relative tox is obtained by tensorial
product of one-dimensional basis functions andφj(x) = Πd

n=1 ψ jn(xn).
• x ∈ ∂Ωk. In this case,x lies on a faceF = Ωk ∩ Ωk′ normal to, lets say,

the q-th dimension. The basis functionφj relative to x is built as φj(x) =

ψ jq(xq)Πn6=qψ⊥
jn(x

⊥
n ). The functions

{
ψ⊥

jn

}
— defined as the Lagrange inter-

polants at the GLL nods
{

x⊥n
}

— are obtained by linear combinations of the{
ψ jn

}

ψ⊥
jn(x) = ∑

im

ψ⊥
jn(xm)ψim(x) = ∑

im

C
k
nmψim(x).

The nodes
{

x⊥n
}

are given by the lowest GLL quadrature on the faceF :
pF = min(pk, pk′).

Problem (2) is now brought into the algebraic form

Au = f , (4)

whereA= ∑N
n=1P t

nAnPn and{An} are the matrices representing the bilinear forms
an

c(., .) of problem (3). The{Pn} are defined in terms of the coefficient{C n
i j }

Pn =

[
I 0
0 C n

]
,

provided that internal unknowns are all ordered before those of the interface. In the
next section, we present the continuous solver relative to this algebraic system.

2.3 BDDC as a preconditioner for the Schur complement

In this section, we assume that the domainΩ is decomposed into nonoverlapping
subdomainsΩ =

⋃
k Ω (k). Each subdomainΩ (k) has diameterHk and is composed

of several spectral elementsΩ (k) =
⋃Nk

m=1 Ω m having diameterhk — we assume
without loss of generality that the partition is spatially uniform inside a subdomain
— so thatHk/hk quantifies the number of spectral elements along a subdomainedge.
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By partitioning the local degrees of freedom into interior (I) and interface (Γ ) sets,
and by further partitioning the latter into dual (∆ ) and primal (Π ) degrees of free-
dom, then the matrixA(n) relative to the restriction ofac(., .) to then-th subdomain
Ω (n) can be written as

A(n) =

[
A(n)

II A(n)T

Γ I

A(n)
Γ I A(n)

Γ Γ

]
=




A(n)
II A(n)T

∆ I A(n)T

Π I

A(n)
∆ I A(n)

∆∆ A(n)T

Π∆
A(n)

Π I A(n)
Π∆ A(n)

ΠΠ


 . (5)

The choice of primal and dual variables is discussed in [12].In two dimensions,
the primal variables reduce to the vertices of the subdomains while the dual ones
correspond to the unknowns lying on an interface between twosubdomains. Using
the scaled restriction matrices defined in [12] and keeping the same notations, the
BDDC preconditioner for the Schur complement of system (4) can be written as

M−1 = R̃T
D,Γ S̃−1

Γ R̃D,Γ , (6)

where

S̃−1
Γ = RT

Γ ∆




N

∑
n=1

[
0 R(n)T

∆

][
A(n)

II A(n)T

∆ I

A(n)
∆ I A(n)

∆∆

]−1[
0

R(n)
∆

]
RΓ ∆ +ΦS−1

ΠΠ ΦT , (7)

with the coarse matrix

SΠΠ =
N

∑
n=1

R(n)T

Π


A(n)

ΠΠ −
[

A(n)
Π I A(n)

Π∆

][
A(n)

II A(n)T

∆ I

A(n)
∆ I A(n)

∆∆

]−1[
A(n)T

Π I

A(n)T

Π∆

]
R(n)

Π

and a matrixΦ mapping interface variables to primal degrees of freedom, given by

Φ = RT
Γ Π −RT

Γ ∆

N

∑
n=1

[
0 R(n)T

∆

][
A(n)

II A(n)T

∆ I

A(n)
∆ I A(n)

∆∆

]−1[
A(n)T

Π I

A(n)T

Π∆

]
R(n)

Π .

Equation (7) means that we solve on each subdomain a problem with Neumann
data for the dual variables and a coarse problem with matrixSΠΠ for the primal
variables.

Theorem 1. The condition numberκ2 of the BDDC and FETI-DP preconditioned
systems in 2D, using at least one primal vertex for each subdomain edge FΩ ⊆ Γ ,
satisfies the following bound:

κ2(M
−1Ŝ)≤C

(
1+ log

(
H max

FK⊆Γ

p2
FK

hFK

))2

, (8)
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where pFK is the polynomial degree over an element edge FK (we recall that if
FK = ∂K

⋂
∂K′, then pFK = min(pK , pK′) and the constant C> 0 is independent

of pFK ,hFK ,H and the values of the coefficientµ of the elliptic operator.

This result (see [4] for a proof) states in particular that the preconditioned problem
is scalable in the number of subdomains and robust with respect to jumps in the
elliptic coefficients. Once we have a preconditioner for theSchur complement of
the CG-SEM problem, we are able to build a global preconditioner for DGvia the
Auxiliary Space Method. This is the object of the next section.

3 Preconditioning DG with ASM-BDDC

3.1 DG-SEM discretization for elliptic problems

We recall that the weak form of problem (1) obtained choosingas Galerkin space
Vδ = {v : Ω → R | ∀k, v|Ωk

∈ Ppk(Ωk), v∈ L2(Ω)} , that is the space of discontin-
uous elementwise polynomial functions is given by:
Find u∈ H1

0(Ω) such that

a(u,v) = L(v) ∀v∈ Vδ , (9)

where the bilinear form defined onVδ ×Vδ is

aδ (u,v) = ∑
K∈K

∫

K
µ ∇u·∇v− ∑

F∈F

µF

∫

F
{{∇u}}F [[v]]F +{{∇v}}F [[u]]F

+ ∑
F∈F

ηF µF

∫

F
[[u]]F [[v]]F ,

as well as the linear formF(v) =
∫

Ω f v defined onVδ . The jump[[.]]F and average
{{.}}F operators are the standard ones defined e.g. in [2] and the coefficients ηF

andµF are defined as in [6]. Choosing an appropriate basis ofVδ , problem (9) is
brought into its algebraic form and we are ready to apply the ASM preconditioning
technique.

3.2 The auxiliary space method (ASM)

The Auxiliary Space Method (ASM) [11] gives a general framework for design-
ing preconditioners of nonconforming discretizations, provided preconditioners for
some related conforming discretizations are available. Hereafter, we recall the ASM
formulation tailored to the current situation of interest,referring e.g. to [3] for the
most general setting. We assume there exists a symmetric bilinear formbδ (u,v) on
Vδ ×Vδ and a linear operatorQc

δ : Vδ →Vc
δ such that
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aδ (v,v). bδ (v,v) ∀v∈Vδ (10)

and
bδ (v−Qc

δ v,v−Qc
δ v). aδ (v,v) ∀v∈Vδ . (11)

Here and in the sequel, the symbol. means≤ c for a constantc bounded indepen-
dently of δ in the admissible range of variability ofδ . This implies the following
algebraic results. LetA andB denote the matrices associated with the formsaδ and
bδ once a basis inVδ has been chosen; similarly, letA denote the matrix associ-
ated with the forma= aδ restricted toVc

δ , once a basis inVc
δ has been chosen. Let

Z be the matrix representing the inclusionVc
δ ⊂ Vδ in the chosen bases. In addi-

tion, assume thatP−1
B is a symmetric preconditioner forB andP−1

A is a symmetric
preconditioner forA, such that the following eigenvalue bounds hold:

λmax(P
−1
B B), λmax(P

−1
A A) ≤ Λmax, λmin(P

−1
B B), λmin(P

−1
A A) ≥ Λmin .

Then,
P−1
A

:= P−1
B +ZP−1

A ZT (12)

is a symmetric preconditioner forA, such that

κ2(P
−1
A

A)≤
Λmax

Λmin
. (13)

Now, we choose forP−1
A the global BDDC-based preconditioner defined according

to [13]

P−1
A =

(
I −A−1

II AIΓ
0 I

)(
A−1

II 0
0 M−1

)(
I 0

−AΓ I A
−1
II I

)
, (14)

whereM−1 is the BDDC preconditioner of equation (6). The subscriptΓ means
that we consider the unknowns lying on the Schur skeleton while the subscriptI is
linked to internal unknowns (inside a subdomain). In the last section, we present
some numerical results showing the robustness of preconditioners (6) and (12).

4 Numerical results and conclusion

We present two test cases that illustrate the robustness andquasi-optimality of both
preconditionersP−1

A andP−1
A

. First, the number of spectral elements is fixed and we
consider both jumping elliptic coefficients and polynomialdegrees, see Figure 1.
The results are presented in Table 1, where it is shown that the condition number
κ2(P

−1
A A) is quite insensitive to moderate jumps in the polynomial degree such as

p → p+ 2 → p+ 4. Discontinuities in the elliptic coefficients are managedquite
well by the ASM-BDDC preconditioner for minor variations inthe polynomial de-
gree. We also study the sensitivity ofκ2 to simultaneous variations inh and p. In
particular, settingH = 1 (that is the continuous solver is exact), Table 2 shows that
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the condition number of the ASM-BDDC remainsO(1) in agreement with bound
(8) in Theorem 1. Lastly, a case with rectangular spectral elements is investigated,
see Figure 2. We consider a diadic evolution of spectral elements widthh as 2−i for
i = 1, · · · ,5 with a uniform polynomial degree. The results are presented in Figure 2
for bothk2(P

−1
A

A) andκ2(P
−1
A A).

As a conclusion, this paper presents a new way of preconditioning DG-SEM
systems based on an available preconditioner for CG-SEM. The ASM applied to
such a global BDDC-based preconditioner provides a solver for DG that is still

0(H log(maxp2
K

hK
)) but it also introduces a dependence on the maximal polynomial

jump and elliptic coefficients. However, we show numerically that for moderate
polynomial jumps, the preconditioner is scalable and quasi-optimal.

Fig. 1 Test case with 5×5
subdomains. Polynomial de-
grees and elliptic coefficients
obey a pyramidal distribution,
where p increases toward
the center of the domain
(a), the elliptic coefficientµ
decreases (b).

(a) (b)

Table 1 Condition numbers for increasing polynomial degreep with nonuniform (uniform in
brackets) polynomial distribution and jumping elliptic coefficients given in Fig. 1, with 5×5 sub-
domains andH/h= 1.

Degreep BDDC κ2(P
−1
A A) ASM-BDDC

κ2(P
−1
A

A)

2 2.34 (1.47) 5.95 (5.09)
4 3.37 (2.64) 6.31 (5.71)
6 4.20 (3.56) 6.54 (6.20)
8 4.89 (4.33) 6.70 (6.50)
10 5.49 (4.99) 6.83 (6.70)
12 6.02 (5.56) 6.94 (6.82)
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Table 2 Condition number of the preconditioned DG matrix for increasing polynomial degree
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Fig. 2 Test case with uniform
polynomial degree and diadic
mesh inh. The ratioH/h
is kept equal to 1, meaning
one element per subdomain.
Condition number of the
preconditioned DG matrix for
this configuration. Uniform
elliptic coefficientsµK = 1.
Results for one element per
subdomainH/h= 1.
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