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1 Introduction

Discontinuous Galerkin (DG) methods for partial diffeiahequations are well
suited to treat nonconforming meshes and inhomogeneoysquuoial orders re-
quired by hp-adaptivity. Their elementwise formulatiommpé us to consider com-
plex meshes and the relaxation of the continuity conssaé@fiows the polyno-
mial order to be refined locally. However, DG discretizatidead to large and
ill-conditioned algebraic systems. In this paper, we stadyuasi-optimal precon-
ditioner for the spectral element version of Discontinu@ederkin methods. In
particular, we focus on the interior penalty formulationsoich DG schemes. For
a review of the different classes of DG methods, the readefésred to [2].

Recent endeavors in the domain decomposition community leead to the de-
velopment of additive [7] and multiplicative [1] Schwarzeponditioners for DG.
Among additive Schwarz solvers, nonoverlapping methodk as BDDC (Balanc-
ing Domain Decomposition by Constraints) or FETI-DP (DBRaimal Finite Ele-
ment Tearing and Interconnecting) for DG have been desifffijemnsidering only
variations on the subdomain sikeor the element sizkin a finite element context.
Based on the pioneer work by [5, 9] and later [10], the BDDG&tgm was re-
cently generalized to CG-SEM (continuous Galerkin spéetements) in [12, 8].
Following the work in [11], and more recently [3], we make a$¢he ASM Auxil-
iary Space Methoxto derive a preconditioner for DG-SEM. The paper is orgaiz
as follows.

First, we generalize the BDDC preconditioners for CG-SEMI&d in [12] to
inhomogeneous polynomial distributions, where polyndrdegrees is allowed to
vary in different elements but we enforce the polynomialrdegf the basis func-
tions to match at the interface between elements.

Second, the ASM is presented and applied to derive a solv@@SEM based
on the previous continuous solver. Once the Schur complefaethe continuous
problem is solved, the global continuous solution is readbtained using exact
local solvers. The discontinuous solution is then obtaswding the ASM problem.
The resulting preconditioner is proved to have the samepeences of the BDDC
preconditioners for CG-SEM if the polynomial jumps are sithaenough.
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In the last section, we present numerical simulations shgihe robustness of
the extended BDDC preconditioner with respect to polynéjoiaps. The ASM-
BDDC is finally tested by varying the number of spectral elatager subdomain
H /h, the polynomial degrep and the viscosity coefficients.

The present work is an extension of [4].

2 Balancing Domain Decomposition by Constraintswith
inhomogeneous polynomial degrees

We consider the second-order elliptic problem with homegeis Dirichlet bound-
ary conditions

—O0-(uOu)=f inQ, u=0 ondQ, (1)

whereQ c RY (d = 2,3) is a bounded domain with Lipschitz boundary. Problem
(1) admits a unique weak solution k2(Q) if we assume thaf € L?(Q) and
U €L*(Q), with u > o a.e. inQ for a suitable constanty > 0.

2.1 CG-SEM discretization for elliptic problems

Given a partition ofQ = U{:‘:l Qy into spectral elements, we define the continuous
Galerkin space/{ = {v: Q — R | Vk, Vg € Pp (), ve CY(Q)}, that is the
space of continuous elementwise polynomial functionsblera (1) in its weak
form is then:

Findu € H3(Q) such that

ac(u,v) =L(v) We 7L, 2)
where
aC(UN):Z A p(x)0u- Ovdx, L(V):Z A fvdx

Considering elliptic coefficientgl that are constant on each spectral elemaent
Hjo, = Mk, the bilinear form of problem (2) can be written

ac(u,v) = Zmaﬁ(u,w. ©)
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2.2 CG-SEM with locally varying polynomial degrees

The definition of”V(SC allows the polynomial degree to vary inside an element. How-
ever, the continuity constraint forces the polynomial éegrto match at the inter-
face between two spectral elements, in the direction ptalithe interface. There-
fore, the polynomial degree at the interface is enforcechbyspectral element car-
rying the lowest polynomial degree. For a given polynomialen p on Qy, we
introduce the nodal basis functim{wpin}inzo_,_pn formed by the(pn + 1) Lagrange
interpolants at the Gauss-Legendre-Lobatto (GLL) nomginzo_,_pn in the n-th
dimension. Considering a nodec Qy, the following two configurations can occur:
e X € Q/dQ. Inthis case the basis functignrelative tox |s obtained by tensorial
product of one-dimensional basis functions ane) = r18_; g, (X).
e X € dQ. In this casex lies on a faceF = QN Qy normal to, lets say,
the g-th dimension. The basis functiop relative tox is built as ¢(x) =

L,u,-q(xq)l'lnyéqwjn( x+). The functlons{t,u] } — defined as the Lagrange inter-
polants at the GLL nod¢x; } — are obtained by linear combinations of the

{win}
l.U,n Zlﬂ]n Xm) Wi, (X Z lem

The nodes|x; } are given by the lowest GLL quadrature on the féce
PF = min(px, P ).
Problem (2) is now brought into the algebraic form

Au=f, (4)

whereA=yN | 2L A", and{A"} are the matrices representing the bilinear forms
ag(.,.) of problem (3). The{ %} are defined in terms of the coefficiefi] }

1 0
'@”:{o%n}’

provided that internal unknowns are all ordered beforedtoighe interface. In the
next section, we present the continuous solver relativeisoalgebraic system.

2.3 BDDC as a preconditioner for the Schur complement

In this section, we assume that the dom@ns decomposed into nonoverlapping
subdomaing2 = |J, Q. Each subdomalm( K has diameteH, and is composed
of several spectral elemen&® UNk Q™ having diameteh, — we assume
without loss of generality that the part|t|on is spatiallyiform inside a subdomain
— so thatH/hy quantifies the number of spectral elements along a subdedgiz
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By partitioning the local degrees of freedom into interigrand interface () sets,

and by further partitioning the latter into dual) and primal (7) degrees of free-
dom, then the matriA(" relative to the restriction dd(.,.) to then-th subdomain
QW can be written as

() AT AT
AL AT A
A (AT AT] A (5)
G e R N
[

The choice of primal and dual variables is discussed in [ki2jwo dimensions,
the primal variables reduce to the vertices of the subdosnatmile the dual ones
correspond to the unknowns lying on an interface betweerstvbolomains. Using
the scaled restriction matrices defined in [12] and keepilegseme notations, the
BDDC preconditioner for the Schur complement of system &) loe written as

M~ =Rb-S'Royr. (6)
where
N () AMT 0
~ T A A 1 4T
$l:R/T-A oRrRM I Pal { } Rra+ @Sy @', (7)
n;[ A } Agml) ASZ R(An) n

with the coarse matrix

N () AT AT
_ T [ A [ A A ]| A Aa Ani (n)
Shn nZan (Anl'l [Am An A} A(Anl) A(Anz Aﬁg Ry

and a matrix® mapping interface variables to primal degrees of freedavengoy

N () AT AT
AV A Al o)
®=Rl;—Rl, orM' TRy | R,
n;[ A AN A AT

Equation (7) means that we solve on each subdomain a problgmNgumann
data for the dual variables and a coarse problem with m&ix for the primal
variables.

Theorem 1. The condition humbex, of the BDDC and FETI-DP preconditioned
systems in 2D, using at least one primal vertex for each suadtoedge 5 C I,
satisfies the following bound:

2 2
K2(M~18) <C (1+ log (H é“??r?:)) 7 8)
K= K
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where g, is the polynomial degree over an element edge(We recall that if
Fk = dKN oK', then g, = min(pk, px/) and the constant G 0 is independent
of pr¢, hr, H and the values of the coefficigmtof the elliptic operator.

This result (see [4] for a proof) states in particular that pheconditioned problem
is scalable in the number of subdomains and robust with otgpgumps in the
elliptic coefficients. Once we have a preconditioner for $uhur complement of
the CG-SEM problem, we are able to build a global preconaétidor DGvia the
Auxiliary Space Method. This is the object of the next settio

3 Preconditioning DG with ASM-BDDC

3.1 DG-SEM discretization for elliptic problems

We recall that the weak form of problem (1) obtained choosiagsalerkin space
Vs ={v:iQ = R| VK v €Pp(Q), vEL?(Q)}, thatis the space of discontin-
uous elementwise polynomial functions is given by:

Findu € H3(Q) such that

a(u,v) =L(v) We ¥, 9)

where the bilinear form defined off; x 75 is

asuv) = 3 [WOuDv= 3 ue [ {Ouheive+{Ovlelule
Fe7

Ker /K

+ 3 nere [ [ulelie

Fez

as well as the linear forrf (v) = [, fvdefined on#s. The jump[.]r and average
{. B¢ operators are the standard ones defined e.g. in [2] and tHficzods ng
and ur are defined as in [6]. Choosing an appropriate basigsoforoblem (9) is
brought into its algebraic form and we are ready to apply tB&preconditioning
technique.

3.2 The auxiliary space method (ASM)

The Auxiliary Space Method (ASM) [11] gives a general framekvfor design-
ing preconditioners of nonconforming discretizationgviled preconditioners for
some related conforming discretizations are availablee&feer, we recall the ASM
formulation tailored to the current situation of interegfferring e.g. to [3] for the
most general setting. We assume there exists a symmeiriednilformbs(u,v) on
Vs x V5 and a linear operatd5 : Vs — V5 such that
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as(v,V) Sbs(vV) WE Vs (10)

and
bs(v—Q5vv—Q5v) Sas(vv)  WeVs. (11)

Here and in the sequel, the symijomeans< ¢ for a constant bounded indepen-
dently of é in the admissible range of variability @&. This implies the following
algebraic results. Let andB denote the matrices associated with the foapand
bs once a basis iV5 has been chosen; similarly, I8tdenote the matrix associ-
ated with the forma = a5 restricted tdvy, once a basis iNs has been chosen. Let
Z be the matrix representing the inclusig§i C V5 in the chosen bases. In addi-
tion, assume tha?t’gl is a symmetric preconditioner f@ and P,;l is a symmetric
preconditioner forA, such that the following eigenvalue bounds hold:

Amax(PsB), Amax(Pa'A) < Amaxe  Amin(Ps*B), Amin(Py*A) > Amin .

Then,
P li=Pyt+zR 12T (12)
is a symmetric preconditioner fdx, such that
—1 Amax
Ka(PytA) < (13)
min

Now, we choose foP, ! the global BDDC-based preconditioner defined according

to [13]
p-1_ (1 =AACY (A 0 I 0 ”
A 0 | 0 M71 *AI_IA|7|1| ) ( )

whereM~1 is the BDDC preconditioner of equation (6). The subscfipmeans
that we consider the unknowns lying on the Schur skeletotewhe subscript is
linked to internal unknowns (inside a subdomain). In the $&tion, we present
some numerical results showing the robustness of pregondit (6) and (12).

4 Numerical results and conclusion

We present two test cases that illustrate the robustnesguasi-optimality of both
preconditioner§’A’l andP&l. First, the number of spectral elements is fixed and we
consider both jumping elliptic coefficients and polynontajgrees, see Figure 1.
The results are presented in Table 1, where it is shown tleatahdition number
Kz(PA_lA) is quite insensitive to moderate jumps in the polynomialrdeguch as

p — p+2— p+4. Discontinuities in the elliptic coefficients are managgite

well by the ASM-BDDC preconditioner for minor variationstime polynomial de-
gree. We also study the sensitivity ©f to simultaneous variations imand p. In
particular, settindd = 1 (that is the continuous solver is exact), Table 2 shows that
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the condition number of the ASM-BDDC remai@1) in agreement with bound
(8) in Theorem 1. Lastly, a case with rectangular specteghehts is investigated,
see Figure 2. We consider a diadic evolution of spectral eteswidthh as 2 for
i =1,---,5with a uniform polynomial degree. The results are preskeimé&igure 2
for bothky (P, *A) andkz(Py tA).

As a conclusion, this paper presents a new way of preconditioDG-SEM
systems based on an available preconditioner for CG-SEM.ASM applied to
such a global BDDC-based preconditioner provides a soleDG that is still

2
O(H Iog(maxﬁ—i)) but it also introduces a dependence on the maximal polyrdomia
jump and elliptic coefficients. However, we show numericdhat for moderate
polynomial jumps, the preconditioner is scalable and gopsimal.

(@ (b)

p | p p p | p 10° | 10° 10°  10° | 10°

Fig. 1 Test case with x5 )
subdomains. Polynomial de- r CaslEasiias] 10"
grees and elliptic coefficients

10° | 10°
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obey a pyramidal distribution, P . P 0 I e

where p increases toward 6 6
. p  pt2 | pt2 pt2 10” | 10° 10’ | 10° 10

the center of the domain pre|pr=2|p b

(@), the elliptic coefficienp oo oo 108 108 10° | 10° 108

decreases (b).

Table 1 Condition numbers for increasing polynomial degmevith nonuniform (uniform in
brackets) polynomial distribution and jumping elliptic cod#fitts given in Fig. 1, with % 5 sub-
domains andd /h=1.

Degreep BDDC KZ(PA’lA) ASM-BDDC
Ko(P1A)
2 2.34 (1.47) 5.95 (5.09)
4 3.37 (2.64) 6.31(5.71)
6 4.20 (3.56) 6.54 (6.20)
8 4.89 (4.33) 6.70 (6.50)
10 5.49 (4.99) 6.83 (6.70)
12 6.02 (5.56) 6.94 (6.82)
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Table 2 Condition number of the preconditioned DG matrix for incregsiolynomial degree
p with uniform polynomial distribution and increasirg so that the ratigp?/h is maintained
approximatively constant. Uniform elliptic coefficienig = 1. Results for one subdomatih= 1.

Degreep # elements £ ASM Kz(PAglA)
2 2% 100 5.10
3 1 90 5.44
4 62 96 5.82
5 42 100 6.07
6 2 108 6.25

Fig. 2 Test case with uniform
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