
Simulations of micro channel gas flows with
domain decomposition technique for kinetic and
fluid dynamics equations

Sudarshan Tiwari1, Axel Klar1 and Steffen Hardt2

Key words: Domain decomposition, Particle methods, Boltzmann equation, Navier-
Stokes equations

1 Introduction

In the last 20 years many research papers have been reported about the development
of domain decompositions for the kinetic and the fluid dynamic equations, see for
example [7, 8, 10, 14, 11, 12, 15, 16]. From large to small scale geometries one
may experience different degrees of rarefaction of a gas. The degrees of rarefac-
tion of a gas can be measured by the Knudsen numberKn = λ/L, whereλ is the
mean free path andL is the characteristic length, for example the channel width. For
Kn < 0.001, the flow is in the continuum regime, the compressible Navier-Stokes
equations with no-slip boundary conditions are solved. For0.001< Kn < 0.1, the
flow is in the slip regime, where the Navier-Stokes equationswith velocity-slip and
temperature jump conditions are solved [1]. ForKn > 0.1 a kinetic type approach,
based on the Boltzmann equation is required. We note that thekinetic approach is
valid in the whole range of rarefaction of a gas. At standard conditions the mean free
path of a gas in a micro- or nano channel is of the orderL or larger, so the Knudsen
number is no longer small. Therefore, the fluid dynamic equations, the compressible
Euler or Navier-Stokes equations, cannot predict the flows correctly in a small scale
geometry [9].

In this paper we present stationary solutions of a Poiseuille flow in a micro chan-
nel. We have considered the large range of Knudsen numbers. We use the domain
decomposition of the Boltzmann and the compressible Navier-Stokes equations. We
have coupled a meshfree particle method for the compressible Navier-Stokes equa-
tions and a DSMC type of particle method for the Boltzmann equation. We have
first observed the discrepancy in the Boltzmann and Navier-Stokes solutions. Then
we have defined boundary layers and solved the Boltzmann equations in the bound-
ary layers and the Navier-Stokes equations in the rest of thechannel. We have used
the standard interface boundary conditions between both domains, see [16, 15]. Al-
ternatively, we have solved the Navier-Stokes equations until steady state has been
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reached. It gives quite diffusive solutions, however, thisis the good candidate to
initialize the Boltzmann solver. One can apply a breakdown criterion to the station-
ary Navier-Stokes equations and then decompose the Boltzmann and Navier-Stokes
domains.

The paper is organized as follows. In section 2 we present themathematical mod-
els and numerical methods. In section 3 we discuss the numerical solutions and the
domain decompositions.

2 Governing equations and numerical methods

In this section we introduce the Boltzmann equation, the Navier-Stokes equations as
its hydrodynamic limit, numerical methods and domain decomposition strategies.

2.1 The Boltzmann equation and its hydrodynamic limits

The Boltzmann equation describes the time evolution of a distribution function
f (t,x,v) for particles of velocityv ∈ ℜ3 atx ∈ D ⊂ ℜs(s = 1,2,3) and timet ∈ ℜ+.
It is given by

∂ f
∂ t

+ v ·∇x f = Q( f , f ), (1)

where

Q( f , f ) =

∫

ℜ3

∫

S2
β (|v−w|,η)[ f (v

′
) f (w

′
)− f (v) f (w)]dω(η)dw

with

v
′
= Tv,w(η) = v−η < η ,v−w >, w

′
= Tw,v(η).

Here,β denotes the collision cross section,η is the unit normal vector on the sphere,
dω(η) is the solid-angle element in the direction ofη and<,> is the scalar product.
For the sake of simplicity, we have not used any bold letters for vector quantities,
like x,v,w, etc. Writing the equations in dimensionless form one observes thatQ is
of the orderO( 1

Kn ). The local mean free pathλ = λ (x,t) is given by

λ =
kT√

2π pd2
, (2)

wherek is the Boltzmann constant,T = T (x,t) the temperature,p = p(x,t) the
pressure andd is the diameter of molecules. For more details we refer to [6]. For
Kn tending to zero one can show that the Boltzmann distributionfunction f tends
to the local Maxwellian [5]
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fM(t,x,v) =
ρ

(2πRT )3/2
e−

|v−U |2
2RT , (3)

whereρ = ρ(x,t) is the density,U = U(x,t) the mean velocity andR is the gas
constant. The parameters of the Maxwellianρ ,U,T solve the compressible Euler
equations. This can be verified from the asymptotic expansion of f in Kn, where
the zeroth order approximation gives the local Maxwellian distribution and the first
order approximation [3] gives the Chapman-Enskog distribution

fCE(t,x,v) = fM(t,x,v) [1+ φ(t,x,v)] , (4)

with

φ(t,x,v) =
2
5

q · c
ρ(RT )2

( |c|2
2RT

− 5
2

)

− 1
2

τ : c⊗ c
ρ(RT )2 , (5)

wherec = v−U . Here,φ = O(Kn) and the parametersρ ,U,T,q,τ satisfy the com-
pressible Navier-Stokes equations

∂ρ
∂ t

+ ∇ · (ρU) = 0

∂ (ρU)

∂ t
+ ∇ · (ρU ⊗U + pI− τ) = 0 (6)

∂ (ρE)

∂ t
+ ∇ · [(ρE + p)U − τ ·U −q] = 0,

whereE = |U |2/2+ e is the total energy ande is the internal energy. The stress
tensorτ and heat flux vectorq are of orderKn and given by

τi j = µ
(

∂Ui

∂x j
+

∂U j

∂xi
− 2

3
∇ ·U δi j

)

, q = −κ∇T. (7)

The dynamic viscosityµ = µ(x,t) and the heat conductivityκ = κ(x,t) for a
monatomic gas of hard sphere molecules are of orderKn. They are given, see [4],
by

µ =
5

16d2

√

mkT
π

, κ =
15k
4m

µ , (8)

wherem is the molecular mass. In this paper we have considered a monatomic gas
of hard spheres.

2.2 Numerical methods

We apply Lagrangian particle methods of different characters for both types of equa-
tions. The Boltzmann equation is solved by a DSMC type Monte Carlo method,
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whereas the Navier-Stokes equations are treated with a meshfree particle method,
which is called the Finite Pointset Method (FPM).

2.2.1 Particle Method for the Boltzmann equation

For solving the Boltzmann equation we have used a variant of the DSMC method
[4], developed in [13, 2]. The method is based on the time splitting of the Boltzmann
equation. Introducing fractional steps one solves first thefree transport equation (the
collisionless Boltzmann equation) for one time step. During the free flow, boundary
and interface conditions are taken into account. In a secondstep (the collision step)
the spatially homogeneous Boltzmann equation without the transport term is solved.
To simulate this equation by a particle method an explicit Euler step is performed.
The result is then used in the next time step as the new initialcondition for the free
flow. To solve the homogeneous Boltzmann equation the key point is to find an effi-
cient particle approximation of the product distribution functions in the Boltzmann
collision operator given only an approximation of the distribution function itself. To
guarantee positivity of the distribution function during the collision step a restriction
of the time step proportional to the Knudsen number is needed. That means that the
method becomes exceedingly expensive for small Knudsen numbers.

2.2.2 Meshfree particle method for the Navier-Stokes equations

We solve the Navier-Stokes equations by a meshfree Lagrangian particle method.
We approximate the spatial derivatives at an arbitrary particle from its surround-
ing clouds of points with the help of the least squares method. We express the
compressible Navier-Stokes equations in primitive variables according to the La-
grangian form. We first fill a computational domain by a finite number of particles
and assign all fluid quantities to them. Then we approximate the spatial derivatives
at every particle position. The resulting equations reduceto a time dependent system
of ordinary differential equations. This system can be solved by a simple integra-
tion scheme. One can use the explicit Euler scheme, but this requires a very small
time step. Here a two step Runge-Kutta method is used which issufficient for the
test cases considered in this paper. Due to space limitations, we do not present the
meshfree method, we refer to our earlier reports, see [17, 16].

2.2.3 Coupling particle methods for the Boltzmann and the compressible
Navier-Stokes equations

The DSMC method is a mesh-based method since gas molecules have to be sorted
into cells for the intermolecular collisions. As already described, the compressible
Navier-Stokes equations are solved by a meshfree method. Therefore, we need to
couple the mesh-based and the meshfree particle methods. Wedecompose a domain
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into Boltzmann and Navier-Stokes domains, then we have to prescribe the interface
boundary conditions from one domain into another domain.

In order to apply the interface boundary conditions for the Boltzmann equation,
we have to define the boundary cells (or interface cells) in the Navier-Stokes do-
main. On these buffer cells we generate gas molecules according to a Maxwellian
distribution, where the parameters are approximated from the Navier-Stokes equa-
tions. If the gas molecules leave the Boltzmann domain and enter to Navier-Stokes
one, we delete them.

The interface boundary conditions for the Navier-Stokes equations are applied as
follows. In the Boltzmann domain we sample and store the macroscopic quantities
at the cell centers. Near the interface there may be several Boltzmann cell centers,
which are the neighbor of a Navier-Stokes particle. In this case we consider all
neighboring Boltzmann cells and approximate the spatial derivatives from the least
squares method. Instead of using the Dirichlet boundary condition at the Boltzmann
interface cell, we find this approach is sufficient. When the Navier-Stokes particles
leave the Navier-Stokes domain, we delete them. If they thinned out the domain, we
add new particles and interpolate the data from its neighboring particle values.

It is well known that in all DSMC type solvers there are some statistical fluctua-
tions in the solutions of the Boltzmann equation. These fluctuating data destabilize
the Navier-Stokes solver. Therefore, we need a smoothing operator, see [16, 15] for
details.

3 Numerical results

We consider a micro channel of size[0, 5·H]× [0, H] with H = 1·10−6m as shown
in Fig. 1(b). The left and right walls are inflow and outflow boundaries, respectively
and the upper and lower are solid wall boundaries. While solving the Navier-Stokes
equations, we prescribe a temperatureTin and a pressurepin on the inflow bound-
ary. Similarly, we prescribe a pressurepout on the outflow boundary. We use the
Neumann boundary conditions for the velocity and temperature, on the in- and out-
flow boundaries. Furthermore, zero velocity andT = T0 are considered on the upper
and lower boundaries, whereT0 is the initial temperature of the gas. We choose
Argon as a gas with a molecular massm = 6.63· 10−26kg. The Boltzmann con-
stantk = 1.38·10−23JK−1, the molecular diameterd = 3.68·10−10m, the ratio of
specific heatsγ = 5/3 enter as parameters. These parameters give the gas constant
R = 208JkgK−1. The dynamic viscosity and thermal conductivity in the compress-
ible Navier-Stokes equations are assumed to be constant andare evaluated with the
initial temperature according to eq. (8). The initial velocity is zero. The initial pres-
sure is(pin + pout)/2 and the initial density is determined from the ideal gas law.

When we solve the Boltzmann equation we initialize the gas according to the
Maxwellian distribution in each cell with the initial parameters as described for the
Navier-Stokes solver. We generate the molecules accordingto the Maxwellian dis-
tribution at the inflow boundary, where the density is determined from the given
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pressure and the temperature using the ideal gas law. The mean velocity is extrap-
olated from the the interior of the Boltzmann cells. Similarly, we also generate the
molecules according to the Maxwellian distribution at the outflow boundary, where
we extrapolate the mean velocity and the temperature from the interior cell values
and the pressure is given. If the molecules leave the inflow oroutflow boundary we
delete them. On the upper and lower walls we use the diffuse reflection with thermal
accommodation. We choose 200×40 cells for the Boltzmann solver and the mesh-
free particles for the Navier-Stokes solver of the same order. For the Navier-Stokes
solver we choose the time step∆ t equal to 3·10−11s and 0.5∗∆x/

√

(2RT0), where
∆x is the cell size. In all cases we compute upto the final timet = 1 ·10−6s.

In the first test case, we considerpin = 624000Pa, pout = 208000Pa andT0 =
300K. This gives the Knudsen number on the left of 0.01101 and on the right of
0.03303. We are now in the slip regime, where we expect the Navier-Stokes solu-
tions with no slip boundary conditions do not match with the Boltzmann ones. In
Fig. 1(a) thex component of velocities from both solvers at 2/3rd of the channel
length along they axis are plotted. We observe that there is a discrepancy between
the solutions of both equations. It is required to use slip boundary conditions for the
Navier-Stokes equations on the solid boundaries. Instead of that we define boundary
layers, 5 cells adjacent to the top and bottom walls as the Boltzmann domain and
the rest is the Navier-Stokes one, see Fig. 1 (b). After the domain decomposition the
coupled solutions of the Boltzmann and Navier-Stokes equations match perfectly,
see Fig. 2(a) for this small range of the Knudsen number.
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Fig. 1 (a)x component of velocity along they axis at 2/3rd of the channel length forKn = 0.01101
to 0.03303 from Boltzmann and Navier-Stokes solvers (b) A prioridomain decomposition: ’red’
or ’+’ = Navier-Stokes domain, ’green’ or ’x’ = Boltzmann domain

In the second test case, we increase the Knudsen number by changing different
inlet and outlet pressures 168480Pa and 56160Pa, respectively. This corresponds
the Knudsen number varying 0.0408 to 0.12 from left to right boundaries. For this
range of Knudsen numbers, we decrease the time step∆ t to 2·10−11s for the Navier-
Stokes solver. We are still in the slip regime and close to it,however, for this range of
Knudsen numbers defining the boundary layers like in Fig. 1(b) does not provide the
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correct coupled solutions as shown in Fig. 2(b). Here, we observe that the coupled
solution is close to the Navier-Stokes solution. In this case one may increase the size
of boundary layers, but it is not clear how much one has to increase. So, we use the
alternative strategy.
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Fig. 2 x component of velocity along they axis at 2/3rd of the channel length. (a) forKn = 0.01101
to 0.03303 (b) forKn = 0.0408 to 0.12

The efficient way is to use a breakdown criterion to decomposethe domains as
suggested in [15] for steady problems. The idea is to solve first the Navier-Stokes
equations everywhere until the steady state is reached. As we have seen in Fig. 2
(b), the Navier-Stokes solutions do not match with the Boltzmann solutions in this
regime, however, they are somehow near to the Boltzmann ones. Then we apply
the breakdown criterion‖φ‖ suggested in [14] and decompose the domain. We as-
sume, for example, if the value of‖φ‖ at a cell is less than 0.01 the cell is defined
as a Navier-Stokes cell, otherwise a Boltzmann one. In Fig. 3the time evolution
of the domain decompositions for the Knudsen numbers ranging from 0.01103 to
0.03303 at time different times are plotted. One can solve the Boltzmann and the
Navier-Stokes equations in the corresponding domains. However, for the stationary
solutions, it is sufficient to solve the Navier-Stokes equations until they reach the
steady state and then to further use the domain decomposition and coupling method.
After t = 3 ·10−8s we reach the steady state of the Navier-Stokes equations andthe
domain decomposition does not change. Aftert = 3·10−8s we solve both equations
in their domains of validity until the final time. When we compare the figures Fig.
1(b) and Fig. 3 at timet = 3 ·10−8s, we see the Boltzmann domain is bigger in the
latter figure. There is no unique values for this breakdown quantity. It depends upon
the problem considered.

Now, for higher Knudsen numbers ranging from 0.0408 to 0.12 we observed
that in the steady state the Navier-Stokes domain becomes smaller for the same
criterion, see Fig. 4. Here the above coupling algorithm will not be the optimal one
since we have a very small Navier-Stokes domain and we need additional effort to
use the interface boundary conditions. Therefore, it is convenient to consider the
entire domain as Boltzmann one with the initial conditions as stationary solutions
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Fig. 3 Domain decomposition: ’red’ or ’+’ = Navier-Stokes domain and ’green’ or ’x’ = Boltzmann
domain after application of the breakdown criterion to solutions of the Navier-Stokes equations for
the rangeKn = 0.01101 to 0.03303 . Top rows are fort = 3·10−9s andt = 6·10−9s and the bottom
rows are fort = 9·10−9s andt = 3·10−8s.
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Fig. 4 Domain decomposition: ’red’ or ’+’ = Navier-Stokes domain and ’green’ or ’x’ = Boltzmann
domain after application of the breakdown criterion to stationary solutions of the Navier-Stokes
equations for the rangeKn = 0.0408 to 0.12. Top rows are fort = 2·10−9s ant = 4·10−9s and the
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of the Navier-Stokes equations. Then, we run for few more iterations and then start
sampling the data.

The above results show that the coupling method may be relevant for regimes
where the Knudsen number is less than 0.03.
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