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1 Introduction

In the last 20 years many research papers have been repbogttiae development
of domain decompositions for the kinetic and the fluid dyraeguations, see for
example [7, 8, 10, 14, 11, 12, 15, 16]. From large to smallesgglometries one
may experience different degrees of rarefaction of a gas.ddygrees of rarefac-
tion of a gas can be measured by the Knudsen nuidber A /L, whereA is the
mean free path andis the characteristic length, for example the channel wigin
Kn < 0.001, the flow is in the continuum regime, the compressiblei®&eStokes
equations with no-slip boundary conditions are solved.®001 < Kn < 0.1, the
flow is in the slip regime, where the Navier-Stokes equatieitis velocity-slip and
temperature jump conditions are solved [1]. Kor > 0.1 a kinetic type approach,
based on the Boltzmann equation is required. We note thdtitie¢éic approach is
valid in the whole range of rarefaction of a gas. At standarthitions the mean free
path of a gas in a micro- or nano channel is of the otder larger, so the Knudsen
number is no longer small. Therefore, the fluid dynamic eiguat the compressible
Euler or Navier-Stokes equations, cannot predict the flawsectly in a small scale
geometry [9].

In this paper we present stationary solutions of a Poisefldiv in a micro chan-
nel. We have considered the large range of Knudsen numbersisé&/the domain
decomposition of the Boltzmann and the compressible N&tiekes equations. We
have coupled a meshfree particle method for the compressilier-Stokes equa-
tions and a DSMC type of particle method for the Boltzmannatign. We have
first observed the discrepancy in the Boltzmann and NauiekeS solutions. Then
we have defined boundary layers and solved the Boltzmanrtiegséan the bound-
ary layers and the Navier-Stokes equations in the rest aftihanel. We have used
the standard interface boundary conditions between bottadts, see [16, 15]. Al-
ternatively, we have solved the Navier-Stokes equatiotitsiaady state has been
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reached. It gives quite diffusive solutions, however, fhishe good candidate to
initialize the Boltzmann solver. One can apply a breakdoritergon to the station-
ary Navier-Stokes equations and then decompose the Baitzared Navier-Stokes
domains.

The paper is organized as follows. In section 2 we presemh#tbematical mod-
els and numerical methods. In section 3 we discuss the noahedlutions and the
domain decompositions.

2 Governing equations and numerical methods

In this section we introduce the Boltzmann equation, thei&aStokes equations as
its hydrodynamic limit, numerical methods and domain degosition strategies.

2.1 The Boltzmann equation and its hydrodynamic limits

The Boltzmann equation describes the time evolution of &ildigion function
f(t,x,v) for particles of velocity € 0% atxe D ¢ 0%(s=1,2,3) and timet € [, .
Itis given by

of
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where
Q1) = [ [ BIv=win)[)Fw) — () f(w)da(n)dw

with
V=Tuw(n)=v—n<nyv—w> W =Tu(n).

Here,3 denotes the collision cross sectignis the unit normal vector on the sphere,
dw(n) is the solid-angle elementin the directionpénd<, > is the scalar product.
For the sake of simplicity, we have not used any bold letters/éctor quantities,
like x,v,w, etc. Writing the equations in dimensionless form one olesethatQ is

of the orderﬁ(%). The local mean free path= A (x,t) is given by

kT
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wherek is the Boltzmann constanT, = T(x,t) the temperaturep = p(x,t) the
pressure and is the diameter of molecules. For more details we refer tof6}
Kn tending to zero one can show that the Boltzmann distribtftimction f tends
to the local Maxwellian [5]
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wherep = p(x,t) is the densitylJ = U(x,t) the mean velocity an® is the gas
constant. The parameters of the Maxwell@iJ, T solve the compressible Euler
equations. This can be verified from the asymptotic expansiof in Kn, where
the zeroth order approximation gives the local Maxwelligtribution and the first
order approximation [3] gives the Chapman-Enskog distigiou

foe (t,%,v) = fm (t,x,v) [14 @(t,x, V)], (4)
with o
2 gc c 5 l1:c®c
=S5t (a7~ 3) 2o ©

wherec=v—U. Here,p = ¢(Kn) and the parametes U, T, q, T satisfy the com-
pressible Navier-Stokes equations

ap B
9t +0-(pU)=0
agEXHJmU®U+me:O )
d(pE)

o +0-[(PE+pU—-T1-U—-q =0,
whereE = |U|?/2+ e is the total energy and is the internal energy. The stress
tensort and heat flux vectog are of ordeiKn and given by
(aui ou; 2
Tij =

The dynamic viscosityu = p(x,t) and the heat conductivity = k(x,t) for a
monatomic gas of hard sphere molecules are of dfgerThey are given, see [4],
by

5 mkT 15k

H=Te@\ 7w T amt ®)

wherem is the molecular mass. In this paper we have considered atoraitagas
of hard spheres.

2.2 Numerical methods

We apply Lagrangian particle methods of different charasdte both types of equa-
tions. The Boltzmann equation is solved by a DSMC type MordeldCmethod,
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whereas the Navier-Stokes equations are treated with afreegtarticle method,
which is called the Finite Pointset Method (FPM).

2.2.1 Particle Method for the Boltzmann equation

For solving the Boltzmann equation we have used a variatte@DSMC method
[4], developedin [13, 2]. The method is based on the timétspdiof the Boltzmann
equation. Introducing fractional steps one solves firsfrietransport equation (the
collisionless Boltzmann equation) for one time step. Dgitire free flow, boundary
and interface conditions are taken into account. In a sestapl(the collision step)
the spatially homogeneous Boltzmann equation withoutrresport term is solved.
To simulate this equation by a particle method an explicieEstep is performed.
The result is then used in the next time step as the new ictiadlition for the free
flow. To solve the homogeneous Boltzmann equation the ket fgio find an effi-
cient particle approximation of the product distributiam€tions in the Boltzmann
collision operator given only an approximation of the digition function itself. To
guarantee positivity of the distribution function durimgtcollision step a restriction
of the time step proportional to the Knudsen number is neetieat means that the
method becomes exceedingly expensive for small Knudseiarsn

2.2.2 Meshfree particle method for the Navier-Stokes equains

We solve the Navier-Stokes equations by a meshfree Lagrammzirticle method.
We approximate the spatial derivatives at an arbitraryigdarfrom its surround-
ing clouds of points with the help of the least squares methgel express the
compressible Navier-Stokes equations in primitive vdestaccording to the La-
grangian form. We first fill a computational domain by a finitewber of particles
and assign all fluid quantities to them. Then we approxintatespatial derivatives
at every particle position. The resulting equations redoeetime dependent system
of ordinary differential equations. This system can be edloy a simple integra-
tion scheme. One can use the explicit Euler scheme, butehjisines a very small
time step. Here a two step Runge-Kutta method is used whishfigient for the
test cases considered in this paper. Due to space limisatia& do not present the
meshfree method, we refer to our earlier reports, see [17, 16

2.2.3 Coupling particle methods for the Boltzmann and the copressible
Navier-Stokes equations

The DSMC method is a mesh-based method since gas molecwkesdhde sorted

into cells for the intermolecular collisions. As alreadysdebed, the compressible
Navier-Stokes equations are solved by a meshfree methedefine, we need to
couple the mesh-based and the meshfree particle methodeddenpose a domain
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into Boltzmann and Navier-Stokes domains, then we havedasapibe the interface
boundary conditions from one domain into another domain.

In order to apply the interface boundary conditions for tlétBnann equation,
we have to define the boundary cells (or interface cells) é@Nlavier-Stokes do-
main. On these buffer cells we generate gas molecules dngdaa Maxwellian
distribution, where the parameters are approximated flmrNavier-Stokes equa-
tions. If the gas molecules leave the Boltzmann domain atel ém Navier-Stokes
one, we delete them.

The interface boundary conditions for the Navier-Stokasa¢iqns are applied as
follows. In the Boltzmann domain we sample and store the asmapic quantities
at the cell centers. Near the interface there may be seveitdrBann cell centers,
which are the neighbor of a Navier-Stokes particle. In ttasecwe consider all
neighboring Boltzmann cells and approximate the spatiavaées from the least
squares method. Instead of using the Dirichlet boundarglition at the Boltzmann
interface cell, we find this approach is sufficient. When tlailr-Stokes particles
leave the Navier-Stokes domain, we delete them. If theynédrout the domain, we
add new particles and interpolate the data from its neighggrarticle values.

It is well known that in all DSMC type solvers there are sonaistical fluctua-
tions in the solutions of the Boltzmann equation. These dlatihg data destabilize
the Navier-Stokes solver. Therefore, we need a smoothiagptqr, see [16, 15] for
details.

3 Numerical results

We consider a micro channel of sif 5-H] x [0, H] with H = 1-10~®mas shown
in Fig. 1(b). The left and right walls are inflow and outflow Inalaries, respectively
and the upper and lower are solid wall boundaries. Whileisglthe Navier-Stokes
equations, we prescribe a temperatlireand a pressurpi, on the inflow bound-
ary. Similarly, we prescribe a pressupg on the outflow boundary. We use the
Neumann boundary conditions for the velocity and tempeeatn the in- and out-
flow boundaries. Furthermore, zero velocity anet Tp are considered on the upper
and lower boundaries, wheflg is the initial temperature of the gas. We choose
Argon as a gas with a molecular mass= 6.63- 10 2%kg. The Boltzmann con-
stantk = 1.38- 10-23JK 1, the molecular diametet = 3.68- 10~ 1%m, the ratio of
specific heaty = 5/3 enter as parameters. These parameters give the gas ¢onstan
R = 208JkgK ~1. The dynamic viscosity and thermal conductivity in the coess-
ible Navier-Stokes equations are assumed to be constarirareyaluated with the
initial temperature according to eq. (8). The initial vetgds zero. The initial pres-
sure is(pin+ Pout) /2 and the initial density is determined from the ideal gas law
When we solve the Boltzmann equation we initialize the ga®mling to the
Maxwellian distribution in each cell with the initial paraters as described for the
Navier-Stokes solver. We generate the molecules accotditige Maxwellian dis-
tribution at the inflow boundary, where the density is deiaed from the given
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pressure and the temperature using the ideal gas law. The ve&zity is extrap-
olated from the the interior of the Boltzmann cells. Simifawe also generate the
molecules according to the Maxwellian distribution at thiflow boundary, where
we extrapolate the mean velocity and the temperature frenintierior cell values
and the pressure is given. If the molecules leave the infloputfftow boundary we
delete them. On the upper and lower walls we use the diffdeton with thermal
accommodation. We choose 20@10 cells for the Boltzmann solver and the mesh-
free particles for the Navier-Stokes solver of the sameroFete the Navier-Stokes
solver we choose the time stép equal to 310~ *'sand 05 Ax/+/(2RT0), where
Ax is the cell size. In all cases we compute upto the final tirel - 106,

In the first test case, we considpgf = 624000Pa, poyr = 208000Pa and Tp =
300K. This gives the Knudsen number on the left cdD101 and on the right of
0.03303. We are now in the slip regime, where we expect the K&tmkes solu-
tions with no slip boundary conditions do not match with th@tBmann ones. In
Fig. 1(a) thex component of velocities from both solvers at 2/3rd of thencied
length along the axis are plotted. We observe that there is a discrepancyeleatw
the solutions of both equations. It is required to use slipra@ry conditions for the
Navier-Stokes equations on the solid boundaries. Instethdbwe define boundary
layers, 5 cells adjacent to the top and bottom walls as th&zBalinn domain and
the rest is the Navier-Stokes one, see Fig. 1 (b). After tmeado decomposition the
coupled solutions of the Boltzmann and Navier-Stokes egusiimatch perfectly,
see Fig. 2(a) for this small range of the Knudsen number.
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Boltzmann domain %
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250 | Boltzmann ------- 4
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X-velocity component

L L L
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Y
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Fig. 1 (a)xcomponent of velocity along theaxis at 2/3rd of the channel length fikn=0.01101
to 0.03303 from Boltzmann and Navier-Stokes solvers (b) A pritainain decomposition: red’
or '+ = Navier-Stokes domain, 'green’ or ’x’ = Boltzmann daim

In the second test case, we increase the Knudsen number hgicbalifferent
inlet and outlet pressures 1684&0and 5616@a, respectively. This corresponds
the Knudsen number varying@108 to 012 from left to right boundaries. For this
range of Knudsen numbers, we decrease the timestap2- 10~ sfor the Navier-
Stokes solver. We are still in the slip regime and close twityever, for this range of
Knudsen numbers defining the boundary layers like in Fig) ddles not provide the
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correct coupled solutions as shown in Fig. 2(b). Here, wentesthat the coupled
solution is close to the Navier-Stokes solution. In thiseomse may increase the size
of boundary layers, but it is not clear how much one has tease. So, we use the
alternative strategy.

T 160 ;
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Navier-Stokes Navier-Stokes
250 Boltzmann ------- 4 Boltzmann -------
Coupled  + 140 T R Coupled  +

P
A Ly

X-velocity component
X-velocity component

L L L L L L L L
0 2e-07 4e-07 6e-07 8e-07 1le-06 0 2e-07 4e-07 6e-07 8e-07 1le-06
Y Y

(@) (b)

Fig. 2 xcomponent of velocity along theaxis at 2/3rd of the channel length. (a) #n = 0.01101
to 0.03303 (b) forkn = 0.0408 to 012

The efficient way is to use a breakdown criterion to decomploselomains as
suggested in [15] for steady problems. The idea is to solgetfie Navier-Stokes
equations everywhere until the steady state is reached.eAlsave seen in Fig. 2
(b), the Navier-Stokes solutions do not match with the Bolinn solutions in this
regime, however, they are somehow near to the Boltzmann dines we apply
the breakdown criteriofjg|| suggested in [14] and decompose the domain. We as-
sume, for example, if the value (fp|| at a cell is less than.01 the cell is defined
as a Navier-Stokes cell, otherwise a Boltzmann one. In Fidpe3time evolution
of the domain decompositions for the Knudsen numbers rgnfgom 001103 to
0.03303 at time different times are plotted. One can solve thiizBiann and the
Navier-Stokes equations in the corresponding domains.gdewfor the stationary
solutions, it is sufficient to solve the Navier-Stokes eqpret until they reach the
steady state and then to further use the domain decompuoaitbcoupling method.
Aftert = 3- 10 8swe reach the steady state of the Navier-Stokes equationthand
domain decomposition does not change. After3-10-8swe solve both equations
in their domains of validity until the final time. When we coarp the figures Fig.
1(b) and Fig. 3 at imé = 3-108s, we see the Boltzmann domain is bigger in the
latter figure. There is no unique values for this breakdowamgjty. It depends upon
the problem considered.

Now, for higher Knudsen numbers ranging fron9408 to 012 we observed
that in the steady state the Navier-Stokes domain becomablesrfor the same
criterion, see Fig. 4. Here the above coupling algorithnh mok be the optimal one
since we have a very small Navier-Stokes domain and we nediticahl effort to
use the interface boundary conditions. Therefore, it isvenient to consider the
entire domain as Boltzmann one with the initial conditiossstationary solutions
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Fig. 3 Domain decomposition: red’ or '+’ = Navier-Stokes domairddgreen’ or 'x’ = Boltzmann
domain after application of the breakdown criterion to sohs of the Navier-Stokes equations for
the rangekn = 0.01101 to 003303 . Top rows are fdr=3-10 %sandt = 6- 10 9sand the bottom
rows are fot = 9-10 °sandt = 3-10 8s,
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Fig. 4 Domain decomposition: red’ or '+’ = Navier-Stokes domairddgreen’ or 'x’ = Boltzmann
domain after application of the breakdown criterion toistary solutions of the Navier-Stokes
equations for the rangén = 0.0408 to 012. Top rows are for=2-10sant = 4-10 °sand the
bottom rows are for = 6- 10 °sandt = 2- 10 8s.
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of the Navier-Stokes equations. Then, we run for few moraiitens and then start
sampling the data.

The above results show that the coupling method may be mléoaregimes
where the Knudsen number is less thadid)
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